Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-20T03:41:09.588Z Has data issue: false hasContentIssue false

Chemoautotrophy in Bivalve Molluscs of the Genus Thyasira

Published online by Cambridge University Press:  11 May 2009

P. R. Dando
Affiliation:
The Laboratory, Marine Biological Association, Citadel Hill, Plymouth PL1 2PB
A. J. Southward
Affiliation:
The Laboratory, Marine Biological Association, Citadel Hill, Plymouth PL1 2PB

Extract

The bivalves Thyasiraflexuosa and T. sarsi have enlarged gills which contain numerous prokaryotes. Gills from freshly collected animals contain high concentrations of elemental sulphur. Homogenates of gill tissue show activity for ribulosebisphosphate carboxylase, adenylylsulphate reductase, sulphate adenylyltransferase and sulphate adenylyltransferase (ADP), indicating that the prokaryotes are sulphur-oxidizing autotrophs. Both species can burrow to depths of 8 cm below the sediment surface and use their vermiform feet to construct channels penetrating deeper into the sediment. T.flexuosa and T. sarsi are scarce in sediments with high hydrogen sulphide concentrations and are not found in sediments where the sulphide zone is below their burrowing depth.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, J. A., 1958. On the basic form and adaptations to habitat in the Lucinacea (Eulamellibranchia). Philosophical Transactions of the Royal Society (B), 241, 421—484.Google Scholar
Allen, E. J. & Todd, R. A., 1900. The fauna of the Salcombe estuary. Journal of the Marine Biological Association of the United Kingdom, 6, 151—217.CrossRefGoogle Scholar
Angel, H. H. & Angel, M. V., 1967. Distribution pattern analysis in a marine benthic community. Helgoldnder wissenschaftliche Meeresuntersuchungen, 15, 445–154.CrossRefGoogle Scholar
Bagge, P., 1969. Effects of pollution on estuarine ecosystems. I. Effects of effluents from wood-processing industries on the hydrography, bottom and fauna of Saltkällefjord (W. Sweden). Merentutkimslaitoksen julkaisu, no. 228, 3118.Google Scholar
Bellan, G.J 1967 a. Pollution et peuplements benthiques sur substrat meuble dans la région de Marseille. Premiére partie. Le secteur de Cortiou. Revue Internationale d'Océanographie médicale, 67, 5387.Google Scholar
Bellan, G., 1967 b. Pollution et peuplements benthiques sur substrat meuble dans la région de Marseille. Deuxiéme partie. L'ensemble portuaire marseillais. Revue Internationale d'Océanographie médicale, 8, 5195.Google Scholar
Berg, J. B. & Alatolo, P., 1984. Potential of chemosynthesis in molluscan mariculture. Aqua-culture, 39, 165179.CrossRefGoogle Scholar
Boudreau, B. P. & Westrich, J. T., 1984. The dependence of bacterial sulphate reduction on sulphate concentration in marine sediments. Geochimica et cosmochimica acta, 48, 25032516.CrossRefGoogle Scholar
Cavanaugh, C. M., 1983. Symbiotic chemoautotrophic bacteria in marine invertebrates from sulphide-rich habitats. Nature, London, 302, 5861.CrossRefGoogle Scholar
Clavier, J., 1984. Distribution verticale de la macrofaune benthique dans un sédiment fin non exondable. Cahiers de biologie marine, 25, 141152.Google Scholar
Cline, J. D., 1969. Spectrophotometric determination of hydrogen sulphide in natural waters. Limnology and Oceanography, 14, 454–158.CrossRefGoogle Scholar
Dal, Pont G., Hogan, M. & Newell, B., 1974. Laboratory techniques in marine chemistry. II. Determination of ammonia in sea water and the preservation of samples for nitrate analysis. Report. Division of Fisheries and Oceanography C.S.I.R.O., Australia, no. 55, 8 pp.Google Scholar
Dando, P. R., Southward, A. J. & Southward, E. C, 1986. Chemoautotrophic symbionts in the gills of the bivalve mollusc Lucinoma borealis and the sediment chemistry of its habitat. Proceedings of the Royal Society (B), 227, 227247.Google Scholar
Dando, P. R., Southward, A. J., Southward, E. C. & Barrett, R. L., 1986. Possible energy sources for chemoautotrophic prokaryotes symbiotic with invertebrates from a Norwegian fjord. Ophelia, 66, in press.Google Scholar
Dando, P. R., Southward, A. J., Southward, E. C, Terwilliger, N. B. & Terwilliger, R. C, 1985. Sulphur-oxidising bacteria and haemoglobin in gills of the bivalve mollusc Myrtea spinifera. Marine Ecology -Progress Series, 23, 8598.CrossRefGoogle Scholar
Devol, A. H., Anderson, J. J., Kuivila, K. & Murray, J. W., 1984. A model for coupled sulphate reduction and methane oxidation in the sediments of Saanich Inlet. Geochimica et cosmochimica acta, 48, 9931004.CrossRefGoogle Scholar
Felbeck, H., 1983. Sulfide oxidation and carbon fixation by the gutless clam Solemya reidi: an animal-bacteria symbiosis. Journal of Comparative Physiology, 152 (B), 311.CrossRefGoogle Scholar
Felbeck, H., Childress, J. J. & Somero, G. N., 1981. Calvin-Bensen cycle and sulphide oxidation enzymes in animals from sulphide-rich habitats. Nature, London, 293, 291293.CrossRefGoogle Scholar
Fisher, M. R. & Hand, S. C, 1984. Chemoautotrophic symbionts in the bivalve Lucina floridana from seagrass beds. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 167, 445459.CrossRefGoogle Scholar
Fliermans, C. B. & Brock, T. D., 1973. Assay of elemental sulphur in soil. Soil Science, 115, 120122.CrossRefGoogle Scholar
Ford, E., 1923. Animal communities of the level sea-bottom in the waters adjacent to Plymouth. Journal of the Marine Biological Association of the United Kingdom, 13, 164224.CrossRefGoogle Scholar
Henriksson, R., 1968. The bottom fauna in polluted areas of the sound. Oikos, 19, 111125.CrossRefGoogle Scholar
Henriksson, R., 1969. Influence of pollution on the bottom fauna of the Sound (Öresund). Oikos, 20, 507523.CrossRefGoogle Scholar
Johannessen, P., 1974. Byfjordsundersøkelsen 1973–1974. Delrapport 2. Biologisk resipientundersøkelse av fjordene rundt Bergen. Geofysisk institutt, avd. A. Universitetet i Bergen.Google Scholar
Johannessen, P. J., 1981. Byfjordsundersøkelsen. Resipientundersekelse av fjordene rundt Bergen. Rapport nr 1. Tidsrommet fra Oktober 1979 til og med desember 1980. Statlig program for forurensningsovervåking. Bergen kommune.Google Scholar
Johannessen, P. J., 1982. Byfjordsundersøkelsen. Overvåking av fjordene rundt Bergen 1981. Rapport nr 2. Statlig program for forurensningsovervåking. Bergen kommune.Google Scholar
Johannessen, P. J., 1983. Byfjordsundersekølsen. Overvåking av fjordene rundt Bergen 1982. Rapport nr 3. Statlig program for forurensningsovervåking, Rapp. nr 98/83. Bergen kommune.Google Scholar
Johannessen, P. J., 1984. Byfjordsundersekelsen. Overtaking avfjordene rundt Bergen 1983. Rapport nr 4. Statlig program for forurensningsovervdking. Rapp. nr 160/84. Bergen kommune.Google Scholar
Kauffman, E. G., 1967. Cretaceous Thyasira from the western interior of North America. Smithsonian Miscellaneous Collections, no. 152, 159 pp.Google Scholar
Ockelmann, W. K., 1958. The zoology of East Greenland. Marine Lamellibranchiata. Meddelelser om Grenland, 122(4), 256 pp.Google Scholar
Pearson, T. H., 1971. The benthic ecology of Loch Linnhe and Loch Eil, a sea-loch system on the west coast of Scotland. III. The effect on the benthic fauna of the introduction of pulp mill effluent. Journal of Experimental Marine Biology and Ecology, 6, 211233.CrossRefGoogle Scholar
Pearson, T. H., 1972. The effect of industrial effluent from pulp and paper mills on the marine benthic environment. Proceedings of the Royal Society (B), 180, 469485.Google ScholarPubMed
Rosenberg, R., 1976. Benthic fauna dynamics during succession following pollution abatement in a Swedish estuary. Oikos, 27, 414–127.CrossRefGoogle Scholar
Schweimanns, M. & Felbeck, H., 1985. Significance of the occurrence of chemoautotrophic bacterial endosymbionts in lucinid clams from Bermuda. Marine Ecology - Progress Series, 24, 113120.CrossRefGoogle Scholar
Sous-Weiss, V., 1982. Estudio de las poblaciones macrobenticas en areas contaminadas de la bahia de Marsella (Francia). Anales del Instituto de Ciencias del Mar y Limnologia. Universidad nacional autonoma de Mexico, 9, 118.Google Scholar
Southward, A. J., Southward, E. C, Dando, P. R., Barrett, R. L. & Ling, R., 1986. Chemoautotrophic function of bacterial symbionts in small Pogonophora. Journal of the Marine Biological Association of the United Kingdom, 66, 415437.CrossRefGoogle Scholar
Southward, E. C, 1986. Gill symbionts in thyasirids and other bivalve molluscs. Journal of the Marine Biological Association of the United Kingdom, 66, 899914.CrossRefGoogle Scholar
Spiro, B., Greenwood, P. B., Southward, A. J. & Dando, P. R., 1986. 13C/12C ratios in marine invertebrates from reducing sediments: confirmation of nutritional importance of chemoautotrophic endosymbiotic bacteria. Marine Ecology - Progress Series, 28, 233240.CrossRefGoogle Scholar
Stanley, S. M., 1970. Relation of shell to life habitats of the Bivalvia (Mollusca). Memoirs. Geological Society of America, no. 125, 293 pp.Google Scholar
Stull, J. K., Haydock, C. I. & Montague, D. E., 1986. Effects of Listriobolus pelodes (Echiura) on coastal shelf benthic communities and sediments modified by a major California wastewater discharge. Estuarine, Coastal and Shelf Science, 22, 117.CrossRefGoogle Scholar
Tebble, N., 1966. British Bivalve Seashells. London: British Museum (Natural History).Google Scholar
Zhabina, N. N. & Volkov, I. I., 1978. A method of determination of various sulfur compounds in sea sediments and rocks. In Environmental Biogeochemistry and Geomicrobiology, vol. 3. Methods, Metals and Assessment (ed. Krumbein, W. E.), pp. 735746. Ann Arbor: Ann Arbor Science Publishers.Google Scholar