Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-22T17:35:46.441Z Has data issue: false hasContentIssue false

Characteristics of the Ascophyllum nodosum stands and their associated diversity along the coast of Brittany, France

Published online by Cambridge University Press:  17 June 2010

Claire Gollety*
Affiliation:
UPMC Université de Paris 6, UMR 7144, Station Biologique de Roscoff, 29682, Roscoff, France CNRS, UMR 7144, Station Biologique de Roscoff, 29682, Roscoff, France Department of Zoology, University College Dublin, Belfield, Dublin 4, Ireland
Eric Thiebaut
Affiliation:
UPMC Université de Paris 6, UMR 7144, Station Biologique de Roscoff, 29682, Roscoff, France CNRS, UMR 7144, Station Biologique de Roscoff, 29682, Roscoff, France
Dominique Davoult
Affiliation:
UPMC Université de Paris 6, UMR 7144, Station Biologique de Roscoff, 29682, Roscoff, France CNRS, UMR 7144, Station Biologique de Roscoff, 29682, Roscoff, France
*
Correspondence should be addressed to: C. Golléty, Department of Zoology, University College Dublin, Belfield, Dublin 4, Ireland email: [email protected]

Abstract

The present study aimed at estimating the characteristics of the Ascophyllum nodosum stands along the coast of Brittany, France. Although both an ecologically and economically important macroalga on sheltered rocky shores of the North Atlantic, no study has simultaneously dealt with the variability of the densities, lengths and biomasses of A. nodosum together with a description of its associated algal and animal diversity. There were significant differences in mean lengths and variations in the length–population structures between sites. However, the biomasses and densities showed no significant differences. The biomasses are amongst the highest ones estimated over the entire species distribution. The algal and animal assemblages were typical of A. nodosum zones, but only the identity composition of the algal communities seemed to reflect site differences in environmental forces. The biomasses measured in the present study should help improve future macroalgae biomass and metabolism estimates on regional or global scales. Finally, the data will provide a reference state for future studies on the responses of fucoid canopies to environmental changes.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aberg, P. (1989) Distinguishing between genetic individuals in Ascophyllum nodosum populations on the Swedish west coast. British Phycology Journal 24, 183190.CrossRefGoogle Scholar
Aberg, P. (1990) Measuring size and choosing category size for a transition matrix study of the seaweed Ascophyllum nodosum. Marine Ecology Progress Series 63, 281287.CrossRefGoogle Scholar
Aberg, P. (1992) Size-based demography of the seaweed Ascophyllum nodosum in stochastic environments. Ecology 73, 14881501.CrossRefGoogle Scholar
Airoldi, L. and Beck, M.W. (2007) Loss, status and trends for coastal marine habitats of Europe. Oceanography and Marine Biology: an Annual Review 45, 345405.Google Scholar
Ang, P.O., Sharp, G.J. and Semple, R.E. (1996) Comparison of the structure of populations of Ascophyllum nodosum (Fucales, Phaeophyta) at sites with different harvesting histories. Hydrobiologia 326/327, 179184.CrossRefGoogle Scholar
Arzel, P. and Véron, G. (2005) Pêche à pied professionnelle en Iroise. Activités halieutiques et activités récréatives dans le cadre d'un espace à protéger: le cas du Parc National de la Mer d'Iroise. Groupe de Recherche AMénagement des Usages des Ressources et des Ecosystèmes marins Littoraux, R-05-2005, 516 p.Google Scholar
Arzel, P., Abernot-Le Gac, C., Drogou, M., Huet, J. and Larour, M. (2001) Etude des engins de récolte des algues. Rapport Final. Ifremer, 00/2 210 153/F, 85 pp.Google Scholar
Baardseth, E. (1955) Regrowth of Ascophyllum nodosum after harvesting. Report of the Institute for Industrial Research and Standards. Institute for Industrial Research and Standards, Dublin, 66 pp.Google Scholar
Bertness, M.D., Leonard, G.H., Levine, J.M., Schmidt, P.R. and Ingraham, A.O. (1999) Testing the relative contribution of positive and negative interactions in rocky intertidal communities. Ecology 80, 27112726.CrossRefGoogle Scholar
Boaden, P.J.S. and Dring, M.T. (1980) A quantitative evaluation of the effects of Ascophyllum harvesting on the littoral ecosystem. Helgoland Marine Research 33, 700710.Google Scholar
Bode, A., Lombas, I. and Anadon, N. (1986) Preliminary studies on the reproduction and population dynamics of Monodonta lineata and Gibbula umbilicalis (Mollusca, Gastropoda) on the central coast of Asturias (N. Spain). Hydrobiologia 142, 3139.CrossRefGoogle Scholar
Bruno, J.F. and Bertness, M.D. (2001) Habitat modification and facilitation in benthic marine communities. In Bertness, M.D., Gaines, S.D. and Hay, M.E. (eds) Marine community ecology. Sunderland, MA: Sinauer Associates, Inc, pp. 201218.Google Scholar
Cervin, G., Lindegarth, M., Viejo, R.M. and Aberg, P. (2004) Effects of small-scale disturbance of canopy and grazing on intertidal assemblages on the Swedish west coast. Journal of Experimental Marine Biology and Ecology 302, 3549.CrossRefGoogle Scholar
Chock, J.S. and Mathieson, A.C. (1983) Variations of New England seaweed biomass. Botanica Marina 26, 8797.CrossRefGoogle Scholar
Clarke, K.R. and Gorley, R.N. (2001) Primer (Plymouth Routines In Multivariate Ecological Research). Plymouth: PRIMER-E Ltd.Google Scholar
Clarke, K.R. and Warwick, R.M. (2001) Changes in marine communities: an approach to statistical analysis and interpretation. Plymouth: PRIMER-E, Ltd.Google Scholar
Connor, D.W., Brazier, P., Hill, T.O. and Northern, K.O. (1997) Marine nature conservation review: marine biotope classification for Britain and Ireland. Volume 1. Littoral biotopes. Joint Nature Conservation Committee, No. 229, 362 pp.Google Scholar
Cousens, R. (1984) Estimation of annual production by the intertidal brown alga Ascophyllum nodosum (L.) le Jolis. Botanica Marina 27, 217227.CrossRefGoogle Scholar
Davies, A.J., Johnson, M.P. and Maggs, C.A. (2007) Limpet grazing and loss of Ascophyllum nodosum canopies on decadal time scales. Marine Ecology Progress Series 339, 131141.CrossRefGoogle Scholar
Gattuso, J.-P., Frankignoulle, M. and Wollast, R. (1998) Carbon and carbonate metabolism in coastal aquatic ecosystem. Annual Review of Ecology and Systematics 29, 405434.CrossRefGoogle Scholar
Gaudèncio, M.J. and Guerra, M.T. (1986) Preliminary observations on Gibbula umbilicalis (da Costa, 1778) on the Portuguese coast. Hydrobiologia 142, 2330.CrossRefGoogle Scholar
Gazeau, F., Smith, S.V., Gentili, B., Frankignoulle, M. and Gattuso, J.-P. (2004) The European coastal zone: characterization and first assessment of ecosystem metabolism. Estuarine, Coastal and Shelf Science 60, 673674.CrossRefGoogle Scholar
Golléty, C., Migné, A. and Davoult, D. (2008) Benthic metabolism on a sheltered rocky shore: role of the canopy in the carbon budget. Journal of Phycology 44, 11461153.CrossRefGoogle ScholarPubMed
Guillaumont, B., Callens, L. and Dion, P. (1993) Spatial distribution and quantification of Fucus species and Ascophyllum nodosum beds in intertidal zones using spot imagery. Hydrobiologia 260/261, 297305.CrossRefGoogle Scholar
Jenkins, S.R., Hawkins, S.J. and Norton, T.A. (1999a) Direct and indirect effects of a macroalgal canopy and limpet grazing in structuring a sheltered inter-tidal community. Marine Ecology Progress Series 188, 8192.CrossRefGoogle Scholar
Jenkins, S.R., Norton, T.A. and Hawkins, S.J. (1999b) Interactions between canopy forming algae in the eulittoral zone of sheltered rocky shores on the Isle of Man. Journal of the Marine Biological Association of the United Kingdom 79, 341349.CrossRefGoogle Scholar
Kelly, L., Collier, L., Costello, M.J., Diver, M., McGarvey, S., Kraan, S., Morrissey, J. and Guiry, M.D. (2001) Impact assessment of hand and mechanical harvesting of Ascophyllum nodosum on regeneration and biodiversity. Marine Institute, Dublin, No. 19, 51 pp.Google Scholar
Kendall, M.A. and Lewis, J.R. (1986) Temporal and spatial patterns in the recruitment of Gibbula umbilicalis. Hydrobiologia 142, 1522.CrossRefGoogle Scholar
Keser, M., Swenarton, J.T. and Foertch, J.F. (2005) Effects of thermal input and climate change on growth of Ascophyllum nodosum (Fucales, Phaeophyceae) in eastern Long Island Sound (USA). Journal of Sea Research 54, 211220.CrossRefGoogle Scholar
Lazo, M.L. and Chapman, A.R.O. (1996) Effects of harvesting on Ascophyllum nodosum (L.) Le Jol. (Fucales, Phaeophyta): a demographic approach. Journal of Applied Phycology 8, 87103.CrossRefGoogle Scholar
Le Roux, A. (2005) Les patelles et la régression des algues brunes dans le Morbihan. Penn ar Bed 192, 122.Google Scholar
Legendre, P. and Legendre, L. (1998) Numerical ecology. 2nd English edition. Amsterdam: Elsevier Science B.V.Google Scholar
Masterson, P., Arenas, F., Thompson, R.C. and Jenkins, S.R. (2008) Interaction of top-down and bottom-up control factors in intertidal rockpools: effects on early successional macroalgal community composition, abundance and productivity. Journal of Experimental Marine Biology and Ecology 363, 1220.CrossRefGoogle Scholar
Menge, B.A., Daley, B.D., Wheeler, P.A., Dahlhoff, E., Sanford, E. and Strub, P.T. (1997) Benthic–pelagic links and rocky intertidal communities: bottom-up effects on top-down control. Proceedings of the National Academy of Science of the United States of America 94, 14,53014,535.CrossRefGoogle ScholarPubMed
Middelburg, J.J., Duarte, C.M. and Gattuso, J.-P. (2005) Respiration in coastal benthic communities. In del Giorgio, P.A. and Williams, G.A. (eds) Respiration in aquatic ecosystems. Oxford: Oxford University Press, pp. 206224.CrossRefGoogle Scholar
Munda, I.M. (1987) Distribution and use of some economically important seaweeds in Iceland. Hydrobiologia 151/152, 257260.CrossRefGoogle Scholar
Scherrer, B. (1984) Biostatistique. Québec: Gaëtan Morin.Google Scholar
Smith, S.V. (1981) Marine macrophytes as a global carbon sink. Science 211, 838840.CrossRefGoogle ScholarPubMed
Soneira, A. and Niell, F.X. (1975) Sobre la biología de Ascophyllum nodosum (L.) Le Jolis en Galicia. I. Distribución y abundancia en la ría de Vigo. Investigaciones Pesqueras 39, 4359.Google Scholar
Ugarte, R.A., Sharp, G.J. and Moore, H.B. (2006) Changes in the brown seaweed Ascophyllum nodosum (L.) Le Jol. Plant morphology and biomass produced by cutter rake harvests in southern New Brunswick, Canada. Journal of Applied Phycology 18, 351359.CrossRefGoogle Scholar
Underwood, A.J. (1973) Studies on zonation of intertidal prosobranch molluscs in the Plymouth region. Journal of Animal Ecology 42, 353372.CrossRefGoogle Scholar
Vadas, R.L., Wright, W.A. and Beal, B.F. (2004) Biomass and productivity of intertidal rockweeds (Ascophyllum nodosum Le Jolis) in Cobscook Bay. Northeastern Naturalist 11, 123142.CrossRefGoogle Scholar
Viejo, R.M. and Aberg, P. (2003) Temporal and spatial variation in the density of mobile epifauna and grazing damage in the seaweed Ascophyllum nodosum. Marine Biology 142, 12291241.CrossRefGoogle Scholar
Warner, G.F. (1984) Dynamic stability in two contrasting epibenthic communities. In Gibbs, P.E. (ed.) 19th European Marine Biology Symposium, Plymouth, 16–21 September 1984. Cambridge: Cambridge University Press, pp. 401411.Google Scholar
Watson, D.C. and Norton, T.A. (1987) The habitat and feeding preferences of Littorina obtusata (L.) and L. mariae Sacchi et Rastelli. Journal of Experimental Marine Biology and Ecology 112, 6172.CrossRefGoogle Scholar
Williams, G.A. (1995) Maintenance of zonation patterns in two species of flat periwinkle, Littorina obtusata and L. mariae. Hydrobiologia 309, 143150.CrossRefGoogle Scholar