Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T08:19:52.778Z Has data issue: false hasContentIssue false

Changes in plant lipids during passage through the gut of Calanus

Published online by Cambridge University Press:  11 May 2009

F. G. Prahl
Affiliation:
Organic Geochemistry Unit, University of Bristol, School of Chemistry, Cantock's Close, Bristol, BS TS
G. Eglinton
Affiliation:
Organic Geochemistry Unit, University of Bristol, School of Chemistry, Cantock's Close, Bristol, BS TS
E. D. S. Corner
Affiliation:
The Laboratory, Marine Biological Association, Citadel Hill, Plymouth, PL PB
S. C. M. O'Hara
Affiliation:
The Laboratory, Marine Biological Association, Citadel Hill, Plymouth, PL PB
T. E. V. Forsberg
Affiliation:
The Laboratory, Marine Biological Association, Citadel Hill, Plymouth, PL PB

Extract

By means of capillary gas chromatography (GC) and capillary gas chromatography'mass spectrometry (GC/MS), the aliphatic hydrocarbons, fatty acids, fatty alcohols and 3ß-sterols were identified in saponified lipid extracts of the green alga, Dunaliella primolecta, the copepod, Calanus helgolandicus, and faecal pellets released by the animal when fed in the laboratory on the algal diet. Comparison of the lipid data for faecal pellets with those for the plant showed that marked changes to dietary lipids occur during passage through the gut of the copepod: (1) 17:2, 17:1, and 17:0 hydrocarbons are completely eliminated; (2) polyunsaturated fatty acids (e.g. 16:4 and 18:3) are significantly reduced relative to total fatty acids; (3) evidence of the conversion of phytol to dihydrophytol is observed; (4) C28 and C29 sterols with Δ and Δ nuclear unsaturation are selectively removed from the diet relative to Δ components. The Δ sterols are released unchanged as faecal lipids. Cholest-5-enol, absent from the original diet, is also released in the faecal pellets. These observations illuminate the fate of specific dietary lipids in Calanus and the contribution copepod faecal pellets can make to the overall lipid composition of bottom sediment in many marine environments.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ackman, R. G. & Hooper, S. W. 1968. Examination of isoprenoid fatty acids as distinguishing characteristics of specific marine oils with particular reference to whale oils. Comparative Biochemistry and Physiology, 24, 549565.CrossRefGoogle ScholarPubMed
Ackman, R. G.Tocher, C. S. & Mclachlan, J. 1968. Marine phytoplankter fatty acids. Journal of the Fisheries Research Board of Canada, 25, 1603‐1620.CrossRefGoogle Scholar
Avigan, J. & Blumer, M. 1968. On the origin of pristane in marine organisms. Journal of Lipid Research, 9, 350352.CrossRefGoogle ScholarPubMed
Ballantine, J. A.Lavis, A. & Morris, R. J. 1979. Sterols of phytoplankton — the effects of illumination and growth stage. Phytochemistry, 18, 14591466.CrossRefGoogle Scholar
Bauermeister, A. & Sargent, J. R. 1979. Wax esters: major metabolites in the marine environment. Trends in Biochemical Sciences, 4, 209211.CrossRefGoogle Scholar
Bennett, J. T. 1979. The Role of Zooplankton Fecal Material in the Cycling and Deposition of Particulate Matter in an Estuarine and Deep-oceanic Region of the N. E. Pacific Ocean. Ph.D. Thesis, University of Washington, Seattle.Google Scholar
Bishop, J. K. B.Edmond, J. M.Darlene, R. K.Bacon, M. P. & Silken, W. B. 1977. The chemistry, biology and vertical flux of particulate matter from the upper 400 m of the equatorial Atlantic Ocean. Deep-Sea Research, 24, 511548.CrossRefGoogle Scholar
Blomquist, G. T.Howard, R. W.Mcdaniel, C. A.Remaley, S.Dwyer, L. A. & Nelson, D. R. 1980. Application of methoxymercuration — demercuration followed by mass spectrometry as a convenient microanalytical technique for double-bond location in insect-derived alkenes. Journal of Chemical Ecology, 6, 257269.CrossRefGoogle Scholar
Blumer, M.Guillard, R. R. L. & Chase, T. 1971. Hydrocarbons of marine phytoplankton. Marine Biology, 8, 183189.CrossRefGoogle Scholar
Brooks, P. W. & Maxwell, J. R. 1974. Early stage fate of phytol in a recently deposited lacustrine sediment. In Advances in Organic Geochemistry 1973 (ed. Tissot, B. and Bienner, F.) pp. 977991. Paris: Editions Technip.Google Scholar
Cherry, R. D.Higgo, J. J. W. & Fowler, S. W. 1978. Zooplankton faecal pellets and element residence times in the ocean. Nature, London, 274, 246248.CrossRefGoogle Scholar
Chuecas, L. & Riley, J. P. 1969. Component fatty acids of the total lipids of some marine phytoplankton. Journal of the Marine Biological Association of the United Kingdom, 49, 97116.CrossRefGoogle Scholar
Corner, E. D. S.Head, R. N. & Kilvington, C. C. 1972. On the nutrition and metabolism of zooplankton. VIII. The grazing of Biddulphia cells by Calanus helgolandicus. Journal of the Marine Biological Association of the United Kingdom, 52, 847861.CrossRefGoogle Scholar
Cowey, C. B. & Corner, E. D. S. 1966. The amino acid composition of certain unicellular algae, and of the faecal pellets produced by Calanus finmarchicus when feeding on them. In Some Contemporary Studies in Marine Science (ed. Barnes, H.), pp. 225231. London: Allen and Unwin.Google Scholar
Davies, J. M. 1975. Energy flow through the benthos in a Scottish sea loch. Marine Biology, 31, 353362.CrossRefGoogle Scholar
Deuser, W. G. 1971. Organic-carbon budget of the Black Sea. Deep-Sea Research, 18, 9951004.Google Scholar
Gagosian, R. B.Smith, S. O. & Nigrelli, G. E. 1982. Vertical transport of steroid alcohols and ketones measured in a sediment trap experiment in the equatorial Atlantic Ocean. Geochimica et cosmochimica acta, 46, 11631172.CrossRefGoogle Scholar
Gaudy, R. 1974. Feeding four species of pelagic copepods under experimental conditions. Marine Biology, 25, 125141.CrossRefGoogle Scholar
Goad, L. J. 1975. Cholesterol biosynthesis and metabolism. In Biochemistry of Steroid Hormones (ed. Makin, H. L. J.) pp. 1746. Blackwell Scientific Publications.Google Scholar
Goad, L. J. 1978. The sterols of marine invertebrates: composition, biosynthesis and metabolism. In Marine Natural Products, vol. 2 (ed. Scheur, P. J.) pp. 75172. Academic Press.CrossRefGoogle Scholar
Goad, L. J. 1981. Sterol biosynthesis and metabolism in marine invertebrates. Pure and Applied Chemistry, 53, 837852.CrossRefGoogle Scholar
Honjo, S. & Roman, M. R. 1978. Marine copepod fecal pellets: production, preservation and sedimentation. Journal of Marine Research, 36, 4557.Google Scholar
Krause, M. 1981. Vertical distribution of faecal pellets during Flex’ 76. Helgoldnder Meeresuntersuchungen, 34, 313327.CrossRefGoogle Scholar
Lee, R. F.Nevenzel, J. C. & Paffenhöfer, G.-A. 1971. Importance of wax esters and other lipids in the marine food chain: phytoplankton and copepods. Marine Biology, 9, 99108.CrossRefGoogle Scholar
Matsuda, H. & Koyama, T. 1977. Positional isomer composition of mono-unsaturated fatty acids from a lacustrine sediment. Geochimica et cosmochimica acta, 41, 341345.CrossRefGoogle Scholar
Menzel, D. W. 1974. Primary productivity, dissolved and paniculate organic matter and the sites of oxidation of organic matter. In The Sea, vol. 5 (ed. Goldberg, E. D.) pp. 659678. New York: Wiley.Google Scholar
Minnikin, D. E.Abley, P.Mcquillin, F. J.Kusamran, K.Maskens, K. & Polgar, N. 1974. Location of double bonds in long chain esters by methoxymercuration — demercuration followed by mass spectrometry. Lipids 9, 135140.Google Scholar
Morris, R. J. & Sargent, J. R. 1973. Studies on the lipid metabolism of some oceanic crustaceans. Marine Biology, 22, 7783.CrossRefGoogle Scholar
Nes, W. R. & Mckean, M. L. 1977. Biochemistry of Steroids and other Isopentenoids. 690 pp. University Park Press.Google Scholar
Osterburg, C.Carey, A. G. & Curl, H. 1963. Acceleration of sinking rates of radionuclides in the ocean. Nature, London, 200, 12761277.CrossRefGoogle Scholar
Roth, P. H.Mullin, M. M.Berger, W. H. 1975. Coccolith sedimentation by fecal pellets: laboratory experiments and field observations. Bulletin of the Geological Society of America, 86, 10791084.2.0.CO;2>CrossRefGoogle Scholar
Rubinstein, I. & Goad, L. J. 1974. Sterols of the siphonous marine alga Codium fragile. Phytochemistry, 13, 481484.CrossRefGoogle Scholar
Sargent, J. R.Lee, R. F. & Nevenzel, J. C. 1976. Marine waxes. In Chemistry and Biochemistry of Natural Waxes (ed. Kolattukudy, P. E.), pp. 4991. Amsterdam: Elsevier.Google Scholar
Schneider, H.Gelpi, E.Bennett, E. O. & Oro, J. 1970. Fatty acids of geochemical significance in microscopic algae. Phytochemistry, 9, 613617.CrossRefGoogle Scholar
Sever, J. & Parker, P. L. 1969. Fatty alcohols (normal and isoprenoid) in sediments. Science, New York, 164, 10521054.CrossRefGoogle ScholarPubMed
Shuman, F. R. & Lorenzen, C. J. 1975. Quantitative degradation of chlorophyll by a marine herbivore. Limnology and Oceanography, 20, 580586.CrossRefGoogle Scholar
Small, L. F. & Fowler, S. W. 1973. Turnover and vertical transport of zinc by the euphausiid Meganyctiphanes norvegica in the Ligurian Sea. Marine Biology, 18, 284290.CrossRefGoogle Scholar
Smetacek, V. S. 1980. Zooplankton standing stock, copepod faecal pellets and particulate detritus in Kiel Bight. Estuarine and Coastal Marine Science, 11, 477490.CrossRefGoogle Scholar
Sochard, M. R.Wilson, D. F.Austin, B. & Colwell, R. R. 1979. Bacteria associated with the surface and gut of marine copepods. Applied and Environmental Microbiology, 37, 750759.CrossRefGoogle ScholarPubMed
Tanoue, E.Handa, N. & Sakugawa, H. 1982. Difference of the chemical composition of organic matter between fecal pellet of Euphausia superba and its feed, Dunaliella tertiolecta. Transactions of the Tokyo University of Fisheries, 5, 189196.Google Scholar
Teshima, S.-I. 1971. Bioconversion of β-sitosterol and 24-methylcholesterol to cholesterol in marine Crustacea. Comparative Biochemistry and Physiology, 39B, 815822.Google Scholar
Teshima, S.-I. & Kanazawa, A. 1971. Bioconversion of dietary ergosterol to cholesterol in Anemia salina. Comparative Biochemistry and Physiology, 38B, 603607.Google Scholar
Teshima, S.-I. & Kanazawa, A. 1974. Biosynthesis of sterols in abalone, Haliotus gurneri and mussel, Mytilus edulis. Comparative Biochemistry and Physiology, 47B, 555561.Google Scholar
Teshima, S.-I.Kanazawa, A. & Ando, T. 1972. A C26-sterol in the clam, Tapes philippinarum. Comparative Biochemistry and Physiology, 41B, 121126.Google Scholar
Van Vleet, E. S. & Quinn, J. G. 1979. Early diagenesis of fatty acids and isoprenoid alcohols in estuarine and coastal sediments. Geochimica et cosmochimica acta, 43, 289‐303.CrossRefGoogle Scholar
Volkman, J. K.Corner, E. D. S. & Eglinton, G. 1980. Transformations of biolipids in the marine food web and in underlying bottom sediments. In Collogues Internationeaux du C.N.R.S. no. 293 — Biogeochimie de la matiere organique a l'interface eau-sediment marin, pp. 185197. Paris: Editions C.N.R.S.Google Scholar
Wright, J. L. C. 1979. The occurrence of ergosterol and (22E, 24R)–24–ethylcholesta–5,7,22–trien–3β–ol in the unicellular chlorophyte Dunaliella tertiolecta. Canadian Journal of Chemistry, 57, 25692571.CrossRefGoogle Scholar
Wright, J. L. C. 1981. Minor and trace sterols of Dunaliella tertiolecta. Phytochemistry, 20, 24032405.CrossRefGoogle Scholar