Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-22T06:40:03.271Z Has data issue: false hasContentIssue false

The Blood Cells of Ciona Intestinalis: An Electron Probe X-Ray Microanalytical Study

Published online by Cambridge University Press:  11 May 2009

A. F. Rowley
Affiliation:
Department of Zoology, University College of Swansea, Singleton Park, Swansea, SA2 8PP

Extract

As long ago as 1911, Henze first showed that the ascidian, Phallusia mammillata has the ability to accumulate vanadium from the surrounding sea water into its tissues. Since this report, many other workers have demonstrated vanadium as well as other metals such as iron (Koval'kii, Rezaeva & Kol'tsov, 1962; Milanesi & Burighel, 1978; Macara, McLeod & Kustin, 1979a), manganese (Noddack & Noddack, 1939) and niobium (Carlisle, 1958) in various tunicate species.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bielig, H.-J., Bayer, E., Califano, L. & Wirth, L., 1954. Haemovanadin, ein Sulfato-Komplex des 3-wertigen Vanadiums. Pubblicazioni della Stazione zoologica di Napoli, 25, 2666.Google Scholar
Bielig, H.-J., Bayer, E., Dell, H.-D., Rohns, G., Mollinger, H. & Rudiger, W., 1966. Chemistry of haemovanadin. Protides of the Biological Fluids, 14, 197204.Google Scholar
Botte, L., Scippa, S. & De Vincentiis, M., 1979. Ultrastructural localization of vanadium in the blood cells of Ascidiacea. Experientia, 35, 12281230.Google Scholar
Carlisle, D. B., 1958. Niobium in ascidians. Nature, London, 181, 933.Google Scholar
Carlisle, D. B., 1968. Vanadium and other metals in ascidians. Proceedings of the Royal Society (B), 171, 3142.Google Scholar
Chandler, J. A., 1977. X-ray Microanalysis in the Electron Microscope. 547 pp. Amsterdam: North-Holland Publishing Co.Google Scholar
Hecht, S., 1918. The physiology of Ascidia atra Leuseur. III. The blood system. American Journal of Physiology, 45, 157187.Google Scholar
Henze, M., 1911. Untersuchungen über das Blut der Ascidien. I. Mitt. Die Vanadium verbindung der Blut Korpechen. Hoppe-Seyler's Zeitschrift für physiologische Chemie, 72, 494501.CrossRefGoogle Scholar
Kalk, M., 1963. Intracellular sites of activity in the histogenesis of tunicate vanadocytes. Quarterly Journal of Microscopical Science, 104, 483493.Google Scholar
Koval'skii, V. V., Rezaeva, L. T. & Kol'tsov, G. V., 1962. Concentration of trace elements in the organism and blood cells of Ascidia. Doklady Akademii nauk SSSR, 147, 12151217.Google Scholar
Kustin, K., Levine, D. S., McLeod, G. C. & Curby, W. A., 1976. The blood of Ascidia nigra: blood cell frequency distribution, morphology, and the distribution and valence of vanadium in living blood cells. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 150, 426441.CrossRefGoogle ScholarPubMed
Macara, I. G., 1980. Vanadium – an element in search of a role. Trends in Biochemical Sciences, 5, 9294.CrossRefGoogle Scholar
Macara, I. G., Mcleod, G. C. & Kustin, K., 1979 a. Tunichromes and metal ion accumulation in tunicate blood cells. Comparative Biochemistry and Physiology, 63 B, 299302.Google Scholar
Macara, I. G., McLeod, G. C. & Kustin, K., 1979 b. Vanadium in tunicates: oxygen-binding studies. Comparative Biochemistry and Physiology, 62 A, 821826.CrossRefGoogle Scholar
Macara, I. G., McLeod, G. C. & Kustin, K., 1979 c. Isolation, properties and structural studies on a compound from tunicate blood cells that may be involved in vanadium accumulation. Biochemical Journal, 181, 457465.CrossRefGoogle ScholarPubMed
Milanesi, C. & Burighel, P., 1978. Blood cell ultrastructure of the ascidian Botryllus schlosseri. I. Hemoblast, granulocytes, macrophage, morula cell and nephrocyte. Acta zoologica, 59, 135147.CrossRefGoogle Scholar
Noddack, I. & Noddack, W., 1939. Die Haufigkeiten der Schwermetalle in Meerestieren. Arkiv for zoologi, 32 A (4), 35 pp.Google Scholar
Phipps, D. A., 1976. Metals and Metabolism. 134 pp. Oxford University Press.Google Scholar
Rowley, A. F., 1981. The blood cells of the sea squirt, Ciona intestinalis: morphology, differential counts, and in vitro phagocytic activity. Journal of Invertebrate Pathology, 37, 91100.Google Scholar
Rowley, A. F., 1982. Ultrastructural and cytochemical studies on the blood cells of the sea squirt, Ciona intestinalis. I. Stem cells and amoebocytes. Cell and Tissue Research, 223, 403414.CrossRefGoogle ScholarPubMed
Rummel, W., Bielig, H.-J., Forth, W., Pfleger, K., Rudiger, W. & Seifen, E., 1966. Absorption and accumulation of vanadium by tunicates. Protides of the Biological Fluids, 14, 205210.Google Scholar
Stoecker, D., 1978. Resistance of a tunicate to fouling. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 155, 615626.CrossRefGoogle Scholar
Swinehart, J. H., Biggs, W. R., Halko, D. J. & Schroeder, N. C., 1974. The vanadium and selected metal contents of some ascidians. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 146, 302312.CrossRefGoogle ScholarPubMed
Webb, D. A., 1939. Observations on the blood of certain ascidians, with special reference to the biochemistry of vanadium. Journal of Experimental Biology, 16, 499523.Google Scholar
Webb, D. A., 1956. The blood of tunicates and the biochemistry of vanadium. Pubblicazioni della Stazione zoologica di Napoli, 28, 273288.Google Scholar
Wright, R. K., 1981. Urochordates. In Invertebrate Blood Cells, vol. 2 (ed. Ratcliffe, N. A. and Rowley, A. F.), pp. 565626. Academic Press.Google Scholar