Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-22T04:09:56.789Z Has data issue: false hasContentIssue false

Biological Cycle of Podocoryna Exigua (Cnidaria: Hydrozoa) from a Sandy Bottom of the Ligurian Sea

Published online by Cambridge University Press:  11 May 2009

Carlo Cerrano
Affiliation:
Istituto di Zoologia dell'Università di Genova, Via Balbi 5, 16126 Genova, Italy
Giorgio Bavestrello
Affiliation:
Istituto di Zoologia dell'Università di Genova, Via Balbi 5, 16126 Genova, Italy
Stefania Puce
Affiliation:
Istituto di Zoologia dell'Università di Genova, Via Balbi 5, 16126 Genova, Italy
Michele Sarà
Affiliation:
Istituto di Zoologia dell'Università di Genova, Via Balbi 5, 16126 Genova, Italy

Extract

The genus Podocoryna is characterized by species living on shells usually inhabited by hermit crabs; but the mutual benefits of this association are not well understood.

This study, besides describing the biological cycle of the hydroid Podocoryna exigua, brings new information on the relationship between hydroid and the hermit crab Diogenes pugilator, especially concerning their trophic strategies.

The hydroid shows a seasonal cycle with a minimum density during summer and an increase during autumn and winter, reaching the highest value in spring. The production of medusae is almost constant during all seasons. The dwelling behaviour of the hermit crab affects a particular sedimentivorous strategy of the polyps while a clepto-commensalistic strategy is adopted by the hermit crab towards the hydroid. Laboratory experiments show that the presence/absence of the hermit crab in the shell and also the seawater temperature strongly influence the number of spines, particularly structures developing from polyps. In addition, free-living polyps in the sediments may represent a strategy to colonize free shells.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arillo, A., Bavestrello, G. & Boero, F., 1989. Circannual cycle and oxygen consumption in Eudendrium glomeratum (Cnidaria, Anthomedusae): studies on a shallow waters population. Marine Ecology. Pubblicazioni della Stazione Zoologica di Napoli I, 10, 289301.CrossRefGoogle Scholar
Bavestrello, G., 1985. Idroidi simbionti di paguri e gasteropodi nella Riviera Ligure di Levante. Oebalia, 11, 349362.Google Scholar
Bavestrello, G. & Arillo, A., 1992. Irradiance, temperature and circannual cycle of Eudendrium glomeratum Picard (Hydrozoa, Cnidaria). Bollettino di Zoologia, 59, 4548.CrossRefGoogle Scholar
Bavestrello, G., Cerrano, C., Cattaneo-Vietti, R. & Sarà, M., 1996. Relations between Eudendrium glomeratum (Cnidaria, Hydromedusae) and its associated vagile fauna. Scientia Marina, 60, 137143.Google Scholar
Bénard-Boiard, J., 1962. Dévelopment embryonnaire de Podocoryna carnea (Sars) forma exigua (Haeckel). Cahiers de Biologie Marine, 3, 137155.Google Scholar
Boero, F., 1984. The ecology of marine hydroids and effects of environmental factors: a review. Marine Ecology. Pubblicazioni della Stazione Zoologica di Napoli I, 5, 93118.CrossRefGoogle Scholar
Boero, F., Balduzzi, A., Bavestrello, G., Caffa, B. & Cattaneo-Vietti, R., 1986. Population dynamics of Eudendrium glomeratum (Cnidaria, Anthomedusae) on the Portofino promontory (Ligurian Sea). Marine Biology, 92, 8185.CrossRefGoogle Scholar
Boero, F. & Fresi, E., 1986. Zonation and evolution of a rocky bottom hydroid community. Marine Ecology. Pubblicazioni della Stazione Zoologica di Napoli I, 7, 123150.CrossRefGoogle Scholar
Brooks, W.R. & Mariscal, R.N., 1985. Protection of the hermit crab Pagurus pollicaris Say from predators by hydroid-colonized shells. Journal of Experimental Marine Biology and Ecology, 87, 111118.CrossRefGoogle Scholar
Buckley, W.J. & Ebersole, J.P., 1994. Symbiotic organisms increase the vulnerability of a hermit crab to predation. Journal of Experimental Marine Biology and Ecology, 182, 4664.CrossRefGoogle Scholar
Calder, D.R., 1990. Seasonal cycles of activity and inactivity in some hydroids from Virginia and South Carolina, USA. Canadian Journal of Zoology, 68, 442–150.CrossRefGoogle Scholar
Cazaux, C., 1961. Signification et origine de l'association entre Hydractinia et Pagure: rôle des tropismes larvaires dans le développement de l'hydraire. Bulletin de la Station Biologiaue de Arcachon Bordeaux, 13, 15.Google Scholar
Cerrano, C., Amoretti, D. & Bavestrello, G., 1997. The polyp and the medusa of Zanclea costata Gegenbaur (Cnidaria, Hydrozoa). Italian Journal of Zoology, 64, 177179.CrossRefGoogle Scholar
Christensen, H.E., 1967. Ecology of Hydractinia echinata (Fleming) (Hydroidea, Athecata). I. Feeding biology. Ophelia, 4, 245275.CrossRefGoogle Scholar
Coma, R., 1994. Evaluación de balance energético de dos especies de cnidarios bentónicos marinos. PhD thesis, University of Barcelona, Spain.Google Scholar
Edwards, C., 1972. The hydroids and the medusae Podocoryna areolata, P. borealis, P. carnea. Journal of the Marine Biological Association of the United Kingdom, 52, 97144.CrossRefGoogle Scholar
Gili, J.M. & Hughes, R.G., 1995. The ecolgy of marine benthic hydroids. Oceanography and Marine Biology. Annual Review, 33, 351426.Google Scholar
Grant, W.C. & Pontier, P.J., 1973. Fitness in the hermit crab Pagurus acadianus with reference to Hydmctinia echinata. Bulletin. Mount Desert Island Biological Laboratory, 13, 5053.Google Scholar
Haeckel, E., 1880. Das system der Medusen. Erster Theil, 1879, 1–360. Jena: Gustav Fisher.Google Scholar
Herberts, C., 1964. Note sur la reproduction de l'hydraire Hydractinia aculeata (Wagner 1833). Recueil des Travaux de la Station Marine d'Endoume, 34, 161165.Google Scholar
Herberts, C., 1969. Note au sujet du dévelopement die Nassa pygmaea Lamarck et Hydractinia aculeata (Wagner). Recueil des Travaux de la Station Marine d'Endoume, 45, 351357.Google Scholar
Jensen, K., 1970. The interaction between Pagurus bernhardus (L.) and Hydractinia echinata (Fleming). Ophelia, 8, 135144.CrossRefGoogle Scholar
Mills, C.E., 1976. The association of hydractiniid hydroids and hermit crabs with new observations from north Florida. In Coelenterate ecology and behaviour (ed. G.O., Mackie), pp. 467476. New York: Plenum Press.CrossRefGoogle Scholar
Picard, J., 1958. Origine et affinités de la faune d'hydropolypes (gymnoblastes et calyptoblastes) et d'hydroméduses (anthoméduses et leptoméduses) de la Méditerranée. Rapports et Procèsverbaux des Réunions. Commission Internationale pour l'Exploration Scientifique de la Mer Mediterranée, 14, 187199.Google Scholar
Simkina, R.G., 1980. A quantitative feeding study of the colonies of Perigonimus megas (Hydroida, Bougainvillidae). Zoologischeskii Zhurnal, 59, 500506. [In Russian.]Google Scholar
Stebbing, A.R.D., 1980. Increase in gonozooid frequency as an adaptive response to stress in Campanularia flexuosa. In Developmental biology of coelenterates (ed. P., Tardent and R., Tardent), pp. 2732. Amsterdam: Elsevier/North Holland Biomedical Press.Google Scholar
Torrey, H.B., 1904. Biological studies on Corymorpha. I. Corymorpha palma and environment. Journal of Experimental Zoology, 1, 394422.Google Scholar
Wright, H.O., 1973. Effect of commensal hydroids on hermit crab competition in the littoral zone of Texas. Nature, London, 241, 139140.CrossRefGoogle Scholar
Yamada, M. & Kubota, S., 1991. Notes on the morphology, ecology and life cycles of Fukaurahydra anthoformis and Hataia parva (Hydrozoa, Athecata). Hydrobiologia, 216/217, 159164.CrossRefGoogle Scholar