Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-20T05:45:14.477Z Has data issue: false hasContentIssue false

Behaviour and Feeding of the Nassariid Gastropod Cyclope Neritea, Abundant at Hydrothermal Brine Seeps off Milos (Aegean Sea)

Published online by Cambridge University Press:  11 May 2009

A.J. Southward
Affiliation:
Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth, PL1 2PB.
E.C. Southward
Affiliation:
Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth, PL1 2PB.
P.R. Dando
Affiliation:
Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth, PL1 2PB. School of Ocean Sciences, University of Wales Bangor, Menai Bridge, Gwynedd, LL59 5EY.
J.A. Hughes
Affiliation:
Institute of Marine Biology of Crete, PO Box 2214, Iraklio 71003, Crete, Greece.
M.C. Kennicutt
Affiliation:
Geochemical and Environmental Research Group, Texas A&M University, College Station, Texas 77845, USA
J. Herrera-Alcala
Affiliation:
Geochemical and Environmental Research Group, Texas A&M University, College Station, Texas 77845, USA
Y. Leahy
Affiliation:
Institute of Marine Biology of Crete, PO Box 2214, Iraklio 71003, Crete, Greece.

Extract

Field observations and laboratory experiments were made on Cyclope neritea, a small (~10 mm diameter) burrowing stenoglossan gastropod with a flattened shell found in very high densities (>200 m2) in Paleohori Bay on the south coast of Milos (Aegean Sea). Cyclope neritea forms a high proportion of the biomass at seeps in this bay, where the medium to fine sand overlies hot, sulphidic brines. About half the animals were found on the surface in the daytime, an exception to the normal habit of this species which usually emerges from the sediment only at night. The C. neritea were aggregated on the thinner bacterial mats over the seeps. In the laboratory, C. neritea remained active for 3 h at sulphide concentrations up to 1 mM, the highest concentration in the interstitial water in the upper 25 mm of sediment at the seeps. Although the species can tolerate elevated salinity and temperature, it shows little adaptation for sulphide detoxification by oxidative pathways. It may survive at the seeps by its behaviour pattern, especially the use of the extensible siphon to access oxic water above the sediment boundary layer, and perhaps by exclusion of sulphide from the tissues. Cyclope neritea ingests large quantities of sand together with adhering bacteria and diatoms, but also scavenges on other animals killed by the extreme conditions of the seeps.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bagarinao, T., 1992. Sulfide as an environmental factor and toxicant: tolerance and adaptations in aquatic organisms. Aquatic Toxicology, 24, 2162.CrossRefGoogle Scholar
Bagarinao, T. & Vetter, R.D., 1989. Sulfide tolerance and detoxification in shallow-water marine fishes. Marine Biology, 103, 291302.CrossRefGoogle Scholar
Bedulli, D., 1977. Possible alterations caused by temperature on exploration rhythms in Cyclope neritea (L.) (Gastropoda: Prosobranchia). Bolletino di Zoologica, 44, 4350.CrossRefGoogle Scholar
Bedulli, D., Mezzadri, M.G., Parisi, V. & Poli, P., 1977. Thermobiology of estuarine molluscs. Atti della Societata Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano, 118, 185197.Google Scholar
Burgh, M.E. De & Singla, C.L., 1984. Bacterial colonization and endocytosis on the gill of a new limpet species from a hydrothermal vent. Marine Biology, 84, 16.CrossRefGoogle Scholar
Botz, R., Stüben, D., Winckler, G., Bayer, R., Schmitt, M. & Faber, E., 1996. Hydrothermal gases offshore Milos Island, Greece. Chemical Geology, 130, 161173.CrossRefGoogle Scholar
Dando, P.R., Hughes, J.A., Leahy, Y., Niven, S.J., Taylor, L.J. & Smith, C., 1995a. Gas venting rates from submarine hydrothermal areas around the island of Milos, Hellenic Volcanic Arc. Continental Shelf Research, 15, 913929.CrossRefGoogle Scholar
Dando, P.R., Hughes, J.A. & Thiermann, F., 1995b. Preliminary observations on biological communities at shallow hydrothermal vents in the Aegean Sea. In Hydrothermal vents and processes (ed. L.M., Parson et al.), pp. 303317. London: Special Publications of the Geological Society, no. 87.Google Scholar
Dando, P.R., Jensen, P., O'hara, S.C.M., Niven, S.J., Schmaljohann, R., Schuster, U. & Taylor, L.J., 1994. The effects of methane seepage at an intertidal/shallow subtidal site on the shore of the Kattegat, Vendsyssel, Denmark. Bulletin of the Geological Society of Denmark, 41, 6579.CrossRefGoogle Scholar
Deuser, W.G. & Degens, E.T., 1967. Carbon isotope fractionation in the system CO2(gas)-CO2 (aqueous)-HCO3-(aqueous). Nature, London, 215, 10331035.CrossRefGoogle Scholar
Durako, M.J. & Hall, M.O., 1992. Effects of light on the stable isotope composition of the seagrass Thalassia testudinum. Marine Ecology Progress Series, 86, 99101.CrossRefGoogle Scholar
Hinze, G., 1903. Thiophysa volutans, ein neues Schwefelbakterium. Bericht der Deutschen Botanischen Gesellschaft, 21, 309316.Google Scholar
Juniper, S.K., Jonasson, I.R., Tunnicliffe, V. & Southward, A.J., 1992. Influence of a tubebuilding polychaete on hydrothermal chimney mineralisation. Geology, 20, 895898.2.3.CO;2>CrossRefGoogle Scholar
Kamenev, G.M., Fadeev, V.I., Selin, N.I., Tarasov, V.G. & Malakhov, V.V., 1993. Composition and distribution of macro- and meiobenthos around sublittoral hydrothermal vents in the Bay of Plenty, New Zealand. New Zealand Journal of Marine and Freshwater Research, 27, 407417.CrossRefGoogle Scholar
Kennicutt, M.C., Burke, R.A., Macdonald, I.R., Brooks, J.M., Denoux, G.J. & Macko, S.A., 1992. Stable isotope partitioning in seep and vent organisms: chemical and ecological significance. Chemical Geology (Isotope Geosciences Section), 101, 293310.CrossRefGoogle Scholar
Lebour, M.V., 1937. The eggs and larvae of the British prosobranchs with special reference to those living in the plankton. Journal of the Marine Biological Association of the United Kingdom, 22, 105166.CrossRefGoogle Scholar
Mars, P., 1966. Recherches sur quelques étangs du littoral méditerranéan français et sur leurs faunes malacologiques. Vie et Milieu, 20, supplement, 1359.Google Scholar
Massé, H., Nodot, C. & Mace, A.-E., 1978. Influence de la temperature sur la reproduction et la survie de quelques Nassariidae (Mollusca, Gastéropoda). In Proceedings of the 12th European Marine Biological Symposium (ed. D.S., McClusky and A.J., Berry), pp. 367374. London: Pergamon Press.Google Scholar
MAST 2 Report, 1995. Oxic/anoxic interfaces as productive sites, vol. 1, paper 18. Final Report of MAST Contract CT93–0058. European Commission, Brussels.Google Scholar
Morton, J.E., 1960. The habits of Cyclope neritea, a style-bearing stenoglossan gastropod. Proceedings of the Malacological Society of London, 34, 96105.Google Scholar
Newton, G.L., Dorian, R. & Fahey, R.C., 1981. Analysis of biological thiols: derivatization with monobromobimane and separation by high performance liquid chromatograph. Analytical Biochemistry, 114, 383387.CrossRefGoogle Scholar
Nordsieck, F., 1968. Die europaischen Meeres-Gehauseschnecken (Protobranchia). Stuttgart: Gustav Fischer Verlag.Google Scholar
Oeschger, R. & Vetter, R.D., 1992. Sulfide detoxification and tolerance in Halicryptus spinulosus (Priapulida): a multiple strategy. Marine Ecology Progress Series, 86, 167179.CrossRefGoogle Scholar
Pérès, J-M. & Picard, J., 1964. Nouveau manuel de bionomie benthique de la mer Mediterranée. Récoltes et Travaux de la Station Marine d'Endoume, 31, 1137.Google Scholar
Powell, E.N., Crenshaw, M.A. & Rieger, R.M., 1980. Adaptations to sulfide in sulfide-system meiofauna. End-products of sulfide detoxification in three turbellarians and a gastrotrich. Marine Ecology Progress Series, 2, 169–77.CrossRefGoogle Scholar
Powell, M.A. & Arp, A.J., 1989. Hydrogen sulfide oxidation by abundant nonhemoglobin heme compounds in marine invertebrates from sulfide-rich habitats. Journal of Experimental Zoology, 249, 121132.CrossRefGoogle Scholar
Powell, M.A. & Somero, G.A., 1985. Sulfide oxidation occurs in the animal tissue of the gutless clam Solemya reidi. Biological Bulletin. Marine Biological Laboratory, Woods Hole, 169, 164181.CrossRefGoogle Scholar
Ridgway, S., 1991. The biology of two lucinid bivalves and their associated communities in the British Isles. MSc thesis, University of Liverpool.Google Scholar
Ruby, E.G., Jannasch, H.W. & Deuser, W.G., 1987. Fractionation of stable carbon isotopes during chemoautotrophic growth of sulphur-oxidizing bacteria. Applied and Environmental Microbiology, 53, 19401943.CrossRefGoogle Scholar
Sacchi, C.F., 1960. Ritmi nictemerali di fattori ecologici in microambienti acquatici e salmastri e loro significato biologico. Delpinoa, 2, 99163.Google Scholar
Southward, A.J. et al., 1996. On the biology of submarine caves with sulphur springs: appraisal of 13C/12C ratios as a guide to trophic relations. Journal of the Marine Biological Association of the United Kingdom, 76, 265285.CrossRefGoogle Scholar
Stein, J.L., 1984. Subtidal gastropods consume sulphur-oxidizing bacteria: evidence from coastal hydrothermal vents. Science, New York, 223, 696698.CrossRefGoogle Scholar
Stein, J.L., Cary, S.C., Hessler, R.R., Ohta, S., Vetter, R.D., Childress, J.J. & Felbeck, H., 1988. Chemoautotrophic symbiosis in a hydrothermal vent gastropod. Biological Bulletin. Marine Biological Laboratory, Woods Hole, 174, 373378.CrossRefGoogle Scholar
Thiermann, F., Windoffer, R. & Giere, O., 1994. Selected meiofauna around shallow water hydrothermal vents off Milos (Greece): ecological and ultrastructural aspects. Vie et Milieu, 44, 215226.Google Scholar
Trager, G.C. & De Niro, M.J., 1990. Chemoautotrophic sulphur bacteria as a food source for mollusks at intertidal hydrothermal vents: evidence from stable isotopes. Veliger, 33, 359362.Google Scholar
Trueman, E.R. & Brown, A.C., 1992. The burrowing habit of marine gastropods. Advances in Marine Biology, 28, 389432.CrossRefGoogle Scholar
Vetter, R.D., Powell, M.A. & Somero, G.N., 1991. Metazoan adaptations to hydrogen sulfide. In Metazoan life without oxygen (ed. C., Bryant), pp. 109128. London: Chapman & Hall.Google Scholar
Vismann, B., 1990. Sulphide detoxification and toleration in Nereis (Hediste) diversiciolor and Nereis (Neanthes) virens (Annelida: Polychaeta). Marine Ecology Progress Series, 59, 229238.CrossRefGoogle Scholar
Vismann, B., 1991a. Physiology of sulphide detoxification in the isopod Saduria (Mesidotea) entomon. Marine Ecology Progress Series, 76, 283293.CrossRefGoogle Scholar
Vismann, B., 1991b. Sulfide tolerance: physiological mechanisms and ecological implications. Ophelia, 34, 127.CrossRefGoogle Scholar