Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-22T22:51:47.659Z Has data issue: false hasContentIssue false

The Assimilation of Nutrients from Compounded Diets by the Prawns Palaemon Serratus and Pandalus Platyceros

Published online by Cambridge University Press:  11 May 2009

J. R. M. Forster
Affiliation:
MAFF Fisheries Experiment Station, Conway, N. Wales and Marine Science Laboratories, Menai Bridge, N. Wales
P. A. Gabbott
Affiliation:
NERC Research Unit, Marine Science Laboratories, Menai Bridge, N. Wales

Extract

Assimilation efficiency (percentage of nutrients absorbed) from diets compounded from dry food meals was investigated using the prawns Palaemon serratus Pennant and Pandalus platyceros Brandt. An indirect ratio method using chromic oxide (Cr2O3) as an inert reference material in the diet was employed, but the method was complicated by the prawns' habit of regurgitating part of the indigestible food remains after a meal. Thus quantitative collection of both faeces and the regurgitated, unassimilated food fraction was necessary.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1971

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agrawal, V. P. Tyagi, A. P &. Sharma, S. K. 1967. Physiology of digestion of the freshwater crab Potamon martensi Woodmason. Proc. Symp. Crustacea, Mar. Biol. Ass. India, 1965. Symp. Ser. No. 2, Part III, pp. 1086–92.Google Scholar
Conover, R. J. 1966. Assimilation of organic matter by zooplankton. Limnol. Oceanogr., Vol. II, pp. 338–45.Google Scholar
Dall, W. 1967. Hypo-osmoregulation in Crustacea Comp. Biochem. Physiol., Vol. 21, pp. 653–78.Google Scholar
Dall, W. 1968. Food and feeding of some Australian penaeid shrimps. Fish. Rep. FAO, Vol. 2, 2, No. 57, pp. 251–8.Google Scholar
Dall, W. 1970. Osmoregulation in the lobster Homarus americanus. J. Fish. Res. Bd Can., Vol. 27, pp. 1123–30.CrossRefGoogle Scholar
Davies, P. M. C. 1964. The energy relations of Carassius auratus L. I. Food input and energy extraction efficiency at two experimental temperatures. Comp. Biochem. Physiol., Vol. 12, pp. 6779.CrossRefGoogle Scholar
Forster, G. R. 1951. The biology of the common prawn, Leander serratus Pennant. J. mar. biol. Ass. U.K., Vol. 30, pp. 333–60.Google Scholar
Forster, G. R. 1953. Peritrophic membranes in the Caridea (Crustacea Decapoda). J. mar. biol. Ass. U.K., Vol. 32, pp. 315–18.Google Scholar
Forster, J. R. M. 1970. Further studies on the culture of the prawn, Palaemon serratus Pennant, with emphasis on the post-larval stages. Fishery Invest., Lond., Ser. 2, Vol. 26, No. 6, 40 pp.Google Scholar
Forster, J. R. M. 1971. Some methods of binding prawn diets and their effects on growth and assimilation. J. Cons. perm. int. Explor. Mer (in the Press).Google Scholar
Forster, J. R. M. & Beard, T. W. 1971. Growth experiments with the prawn Palaemon serratus Pennant fed with fresh and compounded diets. (In preparation.)Google Scholar
Huggins, A. K. & Munday, K. A. 1968. Crustacean metabolism. Adv. compar. Physiol. & Biochem., Vol. 3, pp. 271378.CrossRefGoogle ScholarPubMed
Inaba, D. Ogino, C. Takamatsu, C. Sugano, S. & Hata, H. 1962. Digestibility of dietary components in fishes. I. Digestibility of dietary proteins in rainbow trout. Bull. jap. Soc. scient. Fish., Vol. 28, pp. 367–71. (In Japanese, English summary.)Google Scholar
Johannes, R. E. & Satomi, M. 1966. Composition and nutritive value of faecal pellets of a marine crustacean. Limnol. Oceanogr., Vol. 11, pp. 191–7.CrossRefGoogle Scholar
Kooiman, P. 1964. The occurrence of carbohydrases in digestive juice and in hepatopancreas of Astacus fluviatilis Fabr. and of Homarus vulgaris M.-E. J. cell. comp. Physiol., Vol. 63, pp. 197201.CrossRefGoogle ScholarPubMed
Laine, B. 1967. Production and utilization of B.P. protein concentrate. I. The production of hydrocarbon-grown yeasts. Second Int. Conf. on Global Impacts of Appl. Microbiol., Addis-Ababa, 6-;11 Nov. 1967. 6 pp. (Translation.)Google Scholar
Mann, H. 1969. Difference in the digestibility of plant and animal protein by various kinds of fish. Tech. Pap. European Inld Fish. Adv. Commn., No. 9, pp. 194–6.Google Scholar
Maynar, L. A. & Loosli, J. K. 1969. Animal Nutrition, 6th ed. New York: McGraw-Hill Book Co. 613 pp.Google Scholar
Mcginnis, A. J. & Kasting, R. 1964. Comparison of gravimetric and chromic oxide methods for measuring percentage utilization and consumption of food by phytophagous insects. J. Insect Physiol., Vol. 10, pp. 989&95Google Scholar
Bert, M. H. 1954. The determination of metabolic fecal nitrogen. J. Nutr., Vol. 52, pp. 483–97.Google Scholar
Moshiri, G. A. & Goldman, C. R. 1969. Estimation of assimilation efficiency in the crayfish, Pacifastacus leniusculus (DANA) (Crustacea: Decapoda). Arch. Hydrobiol., Vol. 66, pp. 298306.Google Scholar
Newell, R. 1965. The role of detritus in the nutrition of two marine deposit feeders, the proso-branch Hydrobia ulvae and the bivalve Macoma balthica. Proc. zool. Soc. Lond., Vol. 144, pp. 2545.Google Scholar
Nose, T. 1964. Protein digestibility of several test diets in cray and prawn fish. Bull. Freshwat, Fish. Res. Lab., Tokyo, Vol. 14, pp. 23–8. (In Japanese, English summary.)Google Scholar
Nose, T. 1967a. Recent advances in the study of fish digestion. Tech. Pap. European Inld Fish. Adv. Commn., No. 3, pp. 8394.Google Scholar
Nose, T. 1967b. On the metabolic fecal nitrogen in young rainbow trout. Bull. Freshwat. Fish. Res. Lab., Tokyo, Vol. 17, pp. 97–105.Google Scholar
Nose, T. & Mamiya, H. 1963. Protein digestibility of flatfish meal in rainbow trout. Bull. Freshwat. Fish. Res. Lab., Tokyo, Vol. 12, pp. 1–4. (In Japanese, English summary.)Google Scholar
Nose, T. & Toyam, K. 1966. Protein digestibility of brown fish meal in rainbow trout. Bull. Freshwat. Fish. Res. Lab., Tokyo, Vol. 15, pp. 213–24. (In Japanese, English summary.)Google Scholar
O'Shea, J. & Maguire, M. F. 1962. Determination of calorific value of feedstuffs by chromic acid oxidation. J. Sci. Fd Agric, Vol. 13, pp. 530–4.Google Scholar
Panikkar, N. K. 1940. Osmotic properties of the common prawn. Nature, Lond., Vol. 145, p. 108.Google Scholar
Patwardhan, S. S. 1935a. On the structure and mechanism of the gastric mill in Decapoda. V. The structure of the gastric mill in Natantous Macrura - Caridea. Proc. Indian Acad. Sci. B, Vol. 1, pp. 693704.CrossRefGoogle Scholar
Patwardhan, S. S. 1935b. On the structure and mechanism of the gastric mill in Decapoda. VI. The structure of the gastric mill in Natantous Macrura - Penaeidea and Stenopidea; Conclusion. Proc. Indian Acad. Sci. B, Vol. 2, pp. 155–74.Google Scholar
Singh, R. P. & Nose, T. 1967. Digestibility of carbohydrates in young rainbow trout. Bull. Freshwat. Fish. Res. Lab., Tokyo, Vol. 17, pp. 21–5.Google Scholar
Soldatova, I. N. Tsikhon-Lukanina, E. A. Nlkolaeva, G. G. & Lukasheva, T. A. 1969. Assimilability of plant and animal foods by higher marine crustaceans under different conditions. Dokl. Akad. Nauk SSSR, Vol. 184, pp. 1425–8.Google Scholar
Tyagi, A. P. & Prakash, A. 1967. A study on the physiology of digestion in freshwater prawn Macrobrachium dayanum. J. zool. Soc. India, Vol. 19 (1, 2), pp. 7783.Google Scholar
Vonk, H. J. 1960. Digestion and metabolism. In The Physiology of Crustacea, Vol. 1, Metabolism and Growth (ed. T. H. Waterman), pp. 291316. London: Academic Press.Google Scholar
Ward, A. L. 1960. Compound animal feeding stuffs-A guide to their formulation. London: Publ. National Ass. of Corn and Agricultural Merchants.Google Scholar
Wickins, J. F. 1971. Experiments on the culture of the spot prawn, Pandalus platyceros Brandt, and the giant freshwater prawn, Macrobrachium rosenbergii (de Man). (In preparation.)Google Scholar
Woodland, D. J. Hall, B. K. & Calder, J. 1968. Gross bioenergetics of Blatella germanica. Physiol. Zool., Vol. 41, pp. 424–31.CrossRefGoogle Scholar
Yasumasu, I. & Yokoe, Y. 1965. Release of cellulase activity from the microsome fraction of crayfish hepatopancreas by treatment with adenosine triphosphate. Scient. Pap. Coll. gen. Educ. Tokyo, Vol. 15, pp. 95–8.Google Scholar