Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-22T19:02:05.385Z Has data issue: false hasContentIssue false

Assimilation of Dietary Sterols and Faecal Contribution of Lipids by the Marine Invertebrates Neomysis Integer, Scrobicularia Plana and Nereis Diversicolor

Published online by Cambridge University Press:  11 May 2009

Stuart A. Bradshaw
Affiliation:
Organic Geochemistry Unit, University of Bristol, Cantock's Close, Bristol, BS8 ITS
Sean C.M. O'Hara
Affiliation:
Plymouth Marine Laboratory, Citadel Hill, Plymouth, PL1 2PB
Eric D.S. Corner
Affiliation:
Plymouth Marine Laboratory, Citadel Hill, Plymouth, PL1 2PB
Geoffrey Eglinton
Affiliation:
Plymouth Marine Laboratory, Citadel Hill, Plymouth, PL1 2PB

Extract

Feeding by marine invertebrates affects dietary lipids as they pass through the gut (Volkman et al, 1980s; Tanoue et al, 1982; Prahl et al, 1984a, b,1985; Neal et al, 1986; Harvey et ah, 1987,1989). Not only do animals appear to alter the dietary lipids but they also contribute their own lipids to the egested material. Faecal pellets are thus likely to have a lipid composition which has contributions from the ingested food material, the animal itself and the microbial populations residing in the animal's alimentary system.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allais, J.P., Alcaide, A. & Barbier, M., 1973. Fucosterol-24,28 epoxide and 28-oxo-β-sitosterol as possible intermediates in the conversion of (β-sitosterol into cholesterol in the locust Locusta migratoria L., Experientia, 29, 944945.CrossRefGoogle Scholar
Al-Mohanna, F.Y. & Nott, J. A., 1986. B-cells and digestion in the hepatopancreas of Penaeus semisulcatus (Crustacea: Decapoda). journal of the Marine Biological Association of the United Kingdom, 66, 403414.CrossRefGoogle Scholar
Ballantine, J.A., Lavis, A., Roberts, J.C., Morris, R.J., Elsworth, J.F. & Cragg, G.M.L., 1978. Marine sterols. VII. The sterol compositions of oceanic and coastal marine Annelida species. Comparative Biochemistry and Physiology, 61B, 4347.Google Scholar
Barnes, R.D., 1980. Invertebrate Zoology. Japan: Holt-Saunders International.Google Scholar
Bligh, E.G. & Dyer, W.J., 1959. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911917.CrossRefGoogle ScholarPubMed
Brooks, P.W., Eglinton, G., Gaskell, S.J., McHugh, D.J., Maxwell, J.R. & Philp, R.P., 1977. Lipids of recent sediments. Part II. Branched and cyclic alkanes and alkanoic acids of some temperate lacustrine and sub-tropical lagoonal/tidal-flat sediments. Chemical Geology, 20, 189204.CrossRefGoogle Scholar
Culkin, F. & Morris, R.J., 1969. The fatty acids of some marine crustaceans. Deep-Sea Research, 16, 109116.Google Scholar
Gauld, D.T., 1957. A peritrophic membrane in calanoid copepods. Nature, London, 179, 325326.CrossRefGoogle Scholar
Gillan, F.T., Johns, R.B., Verheyen, T.V., Nichols, P.D., Esdaile, R.J. & Bavor, H.J., 1983. Monoun-saturated fatty acids as specific bacterial markers in marine sediments. In Advances in Organic Geochemistry (ed. Bjøroy, M.et al.), pp. 198206. Chichester: John Wiley.Google Scholar
Goad, L.J., 1978. The sterols of marine invertebrates: composition, biosynthesis and metabolites. In Marine Natural Products: Chemical and Biological Perspectives, vol. 2 (ed. Scheuer, P.J.), pp. 75172. New York: Academic Press.CrossRefGoogle Scholar
Harvey, H.R., Bradshaw, S.A., O'hara, S.C.M., Eglinton, G. & Corner, E.D.S., 1988. Lipid composition of the marine dinoflagellate Scrippsiella trochoidea. Phytochemistry, 27, 17231729.CrossRefGoogle Scholar
Harvey, H.R., Eglinton, G., O'hara, S.C.M. & Corner, E.D.S., 1987. Biotransformation and assimilation of dietary lipids by Calanus feeding on a dinoflagellate. Geochimica et Cosmochimica Ada, 51, 30313040.CrossRefGoogle Scholar
Harvey, H.R., O'hara, S.C.M., Eglinton, G. & Corner, E.D.S., 1989. The comparative fate of dinosterol and cholesterol in copepod feeding: implications for a conservative molecular biomarker. Organic Geochemistry, in press.Google Scholar
Hughes, R.N., 1969. A study of feeding in Scrobicularia plana. Journal of the Marine Biological Association of the United Kingdom, 49, 805823.CrossRefGoogle Scholar
Joseph, J.D., 1982. Lipid composition of marine and estuarine invertebrates. Part II. Mollusca. Progress in Lipid Research, 21, 109153.CrossRefGoogle ScholarPubMed
Kates, M. & Volcani, B.E., 1966. Lipid components of diatoms. Biochimica et Biophyska Ada, 116, 264278.CrossRefGoogle ScholarPubMed
Khalil, M.W. & Idler, D.R., 1976. Sterol biosynthesis in the whelk Buccinum undatum. Comparative Biochemistry and Physiology, 55B, 239242.Google ScholarPubMed
Matsuda, H. & Koyama, T., 1977. Positional isomer composition of monounsaturated fatty acids from a lacustrine sediment. Geochimica et Cosmochimica Ada, 41, 341345.CrossRefGoogle Scholar
Michel, C. & Devillez, E.J., 1978. Digestion. In Physiology of Annelids (ed. Mill, P.J.), pp. 509554. London: Academic Press.Google Scholar
Morris, R.J., 1971. Seasonal and environmental effects on the lipid composition of Neomysis integer. Journal of the Marine Biological Association of the United Kingdom, 51, 2131.CrossRefGoogle Scholar
Morris, R.J., Armitage, M.E., Raymont, J.E.G., Ferguson, C.F. & Raymont, J.K.B., 1977. Effects of a starch diet on the lipid chemistry of Neomysis integer (Leach). Journal of the Marine Biological Association of the United Kingdom, 57, 181189.CrossRefGoogle Scholar
Morris, R.J., Ferguson, C.F. & Raymont, J.E.G., 1973. Preliminary studies on the lipid metabolism of Neomysis integer, involving labelled feeding experiments. Journal of the Marine Biological Association of the United Kingdom, 53, 657664.CrossRefGoogle Scholar
Morton, B., 1983. Feeding and digestion in Bivalvia. In The Mollusca, vol. 5, Physiology, pt. 2 (ed. Saleuddin, A.S.M. and Wilbur, K.M.), pp. 65147. London: Academic Press Inc.CrossRefGoogle Scholar
Nagasawa, S & Nemoto, T., 1988. Presence of bacteria in guts of marine crustaceans and on their fecal pellets. Journal of Plankton Research, 10, 559564.CrossRefGoogle Scholar
Neal, A.C., 1984. The Biogeochemical Significance of Copepod Feeding. PhD thesis, University of Bristol.Google Scholar
Neal, A.C., Prahl, F.G., Eglinton, G., O'hara, S.C.M. & Corner, E.D.S., 1986. Lipid changes during a planktonic feeding sequence involving unicellular algae, Elminius nauplii and adult Calanus. Journal of the Marine Biological Association of the United Kingdom, 66, 113.CrossRefGoogle Scholar
Nott, J.A., Corner, E.D.S., Mavin, L.J. & O'hara, S.C.M., 1985. Cyclical contributions of the digestive epithelium to faecal pellet formation by the copepod Calanus helgolandicus. Marine Biology, 89, 271279.CrossRefGoogle Scholar
Payne, D.W., 1978. Lipid digestion and storage in the littoral bivalve Scrobicularia plana (da Costa). Journal ofMolluscan Studies, 44, 295304.Google Scholar
Perry, G.J., Volkman, J.K., Johns, R.B. & Bavor, H.J., 1979. Fatty acids of bacterial origin in contemporary marine sediments. Geochimica et Cosmochimica Acta, 43, 17151725.CrossRefGoogle Scholar
Prahl, F.G., Eglinton, G., Corner, E.D.S. & O'hara, S.C.M., 1984 a. Copepod fecal pellets as a source of dihydrophytol in marine sediments. Science, New York, 224, 12351237.CrossRefGoogle ScholarPubMed
Prahl, F.G., Eglinton, G., Corner, E.D.S., O'hara, S.C.M. & Forsberg, T.E.V., 1984 b. Changes in plant lipids during passage through the gut of Calanus. Journal of the Marine Biological Association of the United Kingdom, 64, 317334.CrossRefGoogle Scholar
Prahl, F.G., Eglinton, G., Corner, E.D.S. & O'hara, S.C.M., 1985. Faecal lipid released by feeding fish on zooplankton. Journal of the Marine Biological Association of the United Kingdom, 65, 547560.CrossRefGoogle Scholar
Saliot, A. & Barbier, M., 1973. Sterols en solution dans l'eau der men leur utilisation par les invertébrés marins. Journal of Experimental Marine Biology and Ecology, 13, 207214.CrossRefGoogle Scholar
Sargent, J.R. & Falk-Petersen, S., 1981. Ecological investigations on the zooplankton community in Balsfjorden, Northern Norway: lipids and fatty acids in Meganyctiphanes norvegica, Thysanoessa raschi and T. inermis during mid-winter. Marine Biology, 62, 131137.CrossRefGoogle Scholar
Sargent, J.R., Gatten, R.R. & Henderson, R.J., 1981. Marine wax esters. Pure and Applied Chemistry, 53, 867871.CrossRefGoogle Scholar
Sargent, J.R., Morris, R.J. & Mclntosh, R., 1978. Biosynthesis of wax esters in oceanic crustaceans. Marine Biology, 46, 315320.CrossRefGoogle Scholar
Savage, D.C., 1977. Microbial ecology of the gastrointestinal tract. Annual Revue of Microbiology, 31, 107133.CrossRefGoogle ScholarPubMed
Sochard, M.R., Wilson, D.F., Austin, B. & Colwell, R.R., 1979. Bacteria associated with the surface and gut of marine copepods. Applied and Environmental Microbiology, 37, 750759.CrossRefGoogle ScholarPubMed
Svoboda, J.A., Thompson, M.J., Robbins, W.E. & Kaplanis, J.N., 1978. Insect steroid metabolism. lipids, 13, 742753.CrossRefGoogle ScholarPubMed
Tanoue, E., Handa, N. & Sakugawa, H., 1982. Difference of the chemical composition of organic matter between fecal pellet of Euphausia superba and its feed, Dunaliella tertiolecta. Transactions of the Tokyo University of Fisheries, 5, 189196.Google Scholar
Teshima, S., 1971. Bioconversion Of β-Sitosterol And 24-Methylcholesterol To Cholesterol In Marine Crustacea. Comparative Biochemistry and Physiology, 39B, 815822.Google Scholar
Teshima, S. & Kanazawa, A., 1971. Utilization and biosynthesis of sterols in Artemia salina. Bulletin of the Japanese Society of Scientific Fisheries, 37, 720723.CrossRefGoogle Scholar
Teshima, S. & Kanazawa, A., 1972. Bioconversion of the dietary brassicasterol to cholesterol in Artemia salina. Bulletin of the Japanese Society of Scientific Fisheries, 38, 13051310.CrossRefGoogle Scholar
Teshima, S. & Kanazawa, A., 1973. Metabolism of desmosterol in the prawn Penaeus japonicus. Memoirs of the Faculty of Fisheries, Kagoshima University, 22, 1519.Google Scholar
Teshima, S. & Kanazawa, A., 1974. Biosynthesis of sterols in abalone, Haliotis gurneri and mussel, Mytilus edulis. Comparative Biochemistry and Physiology, 47B, 555561.Google ScholarPubMed
Teshima, S., Kanazawa, A. & Okamoto, H., 1976. Sterol biosynthesis from acetate and the fate of dietary cholesterol and desmosterol in crabs. Bulletin of the Japanese Society of Scientific Fisheries, 42, 12731280.CrossRefGoogle Scholar
Van Der Veen, J., Medwadowski, B. & Olcutt, H.S., 1971. The lipids of krill (Euphausia species) and red crab (Pleuroncodes planipes). Lipids, 6, 481485.CrossRefGoogle ScholarPubMed
Volkman, J.K. & Johns, R.B., 1977. The geochemical significance of positional isomers of unsatu-rated acids from an intertidal zone sediment. Nature, London, 267, 693694.CrossRefGoogle Scholar
Volkman, J.K., Corner, E.D.S. & Eglinton, G., 1980 a. Transformations of biolipids in the marine food web and in underlying bottom sediments. Colloques Internationaux du Centre National de la Recherche Scientifique, no. 293, 185197.Google Scholar
Volkman, J.K., Johns, R.B., Gillan, F.T., Perry, G.J. & Bavor, H.J., Jr, 1980 b. Microbial lipids of an intertidal sediment - I. Fatty acids and hydrocarbons. Geochimica et Cosmochimica Acta, 44, 11331143.CrossRefGoogle Scholar
Voogt, P.A., 1974. Biosynthesis and composition of sterols in Annelida -1. Investigations on some polychaetes. Netherlands Journal of Zoology, 24, 2231.CrossRefGoogle Scholar
Voogt, P.A., 1975. Investigations of the capacity of synthesizing 3β-sterols in Mollusca - XIV. Biosynthesis and composition of sterols in some bivalves (Eulamellibranchia). Comparative Biochemistry and Physiology, 50B, 505510.Google ScholarPubMed
Wooten, J.A.M. & Wright, L.D., 1962. A comparative study of sterol biosynthesis in Annelida. Comparative Biochemistry and Physiology, 5, 235264.Google Scholar