Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-22T06:46:39.913Z Has data issue: false hasContentIssue false

An Experimental Analysis of the Behaviour of Littorina Littorea (L.) Under Natural Conditions and in the Laboratory

Published online by Cambridge University Press:  11 May 2009

G. E. Newell
Affiliation:
Queen Mary College, University of London

Extract

Winkles dwelling on horizontal surfaces orientate by means of a lightcompass reaction. As the tide recedes, most of the tracks in the sand are towards the sun but after a time each animal reverses its direction of crawling, so tracing out a roughly U-shaped path which leads it back, approximately, to its starting-point.

When kept in an aquarium winkles tend to settle on the sides above the waterline and to become inactive. When stimulated, as by immersion, they crawl downwards, then horizontally and then upwards before settling above the waterline.

Winkles collected from horizontal surfaces at first show no tendency to climb vertical surfaces in an aquarium. After a period which varies from a few hours up to 10 days they do climb the sides of the tank. Animals collected from vertical surfaces climb the sides of the aquarium at their first opportunity and then settle. It can be concluded that winkles have an inherent tendency to climb and settle in the head-up position on vertical or steeply sloping surfaces but that if this opportunity is denied them they become habituated to horizontal surfaces.

The minimum angle to which winkles can react by gravitational responses is of the order of 10–20 degrees.

In an aquarium starved winkles prolong their excursions below water when presented with suitable food but fully fed animals respond less strongly to the stimulus of immersion.

Dark-adapted winkles from horizontal surfaces are at first positively phototactic, but after a time varying from 15 to 20 min, they become negatively phototactic. Tested with the ‘two-light’ experiment most animals disregard the second light (telotaxis).

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1958

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ankel, W. E., 1936. Prosobranchia. Tierwelt N.-u. Ostsee, Teil 9, b, 240 pp. (Lief. 29).Google Scholar
Barkman, J. J., 1955. On the distribution and ecology of Littorina obtusata (L.) and its specific units. Arch, néerl. Zool., T. 11, pp. 2286.Google Scholar
Bohn, G., 1904a. Periodicité vitale des animaux soumis aux oscillations du niveau des hautes mers. C.R. Acad. Sri., Paris, T. 139, pp. 610–11.Google Scholar
Bohn, G., 1904b. Oscillations des animaux littoraux synchrones de la marée. C.R. Acad. Sri., Paris, T. 139, pp. 646–8.Google Scholar
Bohn, G., 1904c. Influence de la position dans l'espace sur les tropismes. C.R. Soc. Biol., Paris, T. 57, pp. 351–3.Google Scholar
Bohn, G., 1905a. Attractions et oscillations des animaux marins sous l'influence de la lumière. Mem. Inst. gén. psychol., T. 1, pp. 1111.Google Scholar
Bohn, G., 1905b. L'édairement des yeux et les mouvements rotatoires. Essais et erreurs dans les tropismes. C.R. Soc. Biol., Paris, T. 59, pp. 564–7.Google Scholar
Colman, J., 1933. The nature of the intertidal zonation of plants and animals. J. mar. biol. Ass. U.K., vol. 18, pp. 435–76.CrossRefGoogle Scholar
Ewer, D. W., 1956. Animal ecology and behaviour. S. Afr.J. Sri., Vol. 52, pp. 211–15.Google Scholar
Frabnkel, G., 1927. Beiträge zur Geotaxis und Phototaxis von Littorina. Z. vergl. Physiol, Bd. 5, pp. 585–97.CrossRefGoogle Scholar
Frabnkel, G. & Gunn, D. L., 1940. The Orientation of Animals, Kineses, Taxes and Compass Reactions. Oxford.Google Scholar
Gowanloch, J. N. & HAYES, F. R., 1926. Contributions to the study of marine gastropods. 1. The physical factors, behaviour and intertidal life of Littorina. Contrib. Canad. Biol., N.S., Vol. 3, pp. 135–65.Google Scholar
Haseman, J. D., 1911. The rhythmical movements of Littorina littorea synchronous with ocean tides. Biol. Bull., Woods Hole, Vol. 21, pp. 113–21.CrossRefGoogle Scholar
Hayes, F. R., 1929. Contributions to the study of marine gastropods. 3. Development, growth and behaviour of Littorina. Contrib. Canad. Biol., N.S., Vol. 4, PP. 413–30.CrossRefGoogle Scholar
Kanda, S., 1916. Studies on the geotropism of the marine snail,Littorina littorea. Biol Bull, Woods Hole, Vol. 30, pp. 5784.CrossRefGoogle Scholar
Lebour, M., 1935. The breeding of Littorina neritoides. J. mar. biol. Ass. U.K., Vol. 20, pp. 373–8.CrossRefGoogle Scholar
Lysaght, A. M., 1941. The biology and trematode parasites of the gastropod, Littorina neritoides (L.) on the Plymouth breakwater. J. mar. biol. Ass. U.K., Vol. 25, pp. 4163.CrossRefGoogle Scholar
Mitsukuri, K., 1901. Negative phototaxis and other properties of Littorina as factors in determining its habitat. Annot. zool. Jap., Vol. 4, pp. 119.Google Scholar
Morse, M. W., 1910. Alleged rhythm in phototaxis synchronous with ocean tides. Proc. Soc. exp. Biol., N. Y., Vol. 7, pp. 145–6.CrossRefGoogle Scholar
Newell, G. E., 1954. Animal zones on the North Kent Coast. S. East. Nat., Vol. 59, pp. 3456.Google Scholar
Newell, G. E., 1958. The behaviour of Littorina littorea (L.) under natural conditions and its relation to its position on the shore. J. mar. biol. Ass. U.K., Vol. 37, pp. 229239.CrossRefGoogle Scholar
Papi, F. & Pardi, L., 1953. Ricerche sull' orientamento di Talitrus saltator (Montagu (Crustacea Amphipoda). 2. Sui fattori che regolano la variazione dell' angolo di orientamento nel corso del giorno. L'orientamento di notte. L' orientamento di un altro populazione. Z. vergl. Physiol., Bd. 35, pp. 490518.CrossRefGoogle Scholar
Pardi, L. & Papi, F., 1953. Ricerche sull' orientamento di Talitrus saltator (Montagu) (Crustacea Amphipoda). 1. L'orientamento durante il giorne in una populazione del littorale tirrenico. Z. vergl. Physiol., Bd. 35, pp. 459–89.CrossRefGoogle Scholar
Pittendrich, C. S., 1956. Perspectives in the study of biological clocks. Perspectives in Marine Biology. University of California Press.Google Scholar
Schwarz, S., 1932. Der Lichteinfluss auf die Fortbewegung, die Einregelung und das Wachstum bei einigen niederen Tieren, (Littorina, Cardium, Mytilus, Balanus, Teredo, Sabellaria) Senckenbergiana, Bd. 14, pp. 429–54.Google Scholar
Stevens, G. C.Fingerman, M. & Brown, F. A., 1953. The orientation of Drosophila to plane of polarized light. Ann. ent. Soc. Amer., Vol. 46, pp. 7583.CrossRefGoogle Scholar
Thorpe, W. H., 1956. Learning and Instinct in Animals. London: Methuen.Google Scholar
Wilson, D. P., 1929. A habit of the common periwinkle (Littorina littorea Linn.). Nature, Lond., Vol. 124, p. 443.CrossRefGoogle Scholar