Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T08:08:58.610Z Has data issue: false hasContentIssue false

Aerobic and anaerobic enzymatic activity and allometric scaling of the deep benthic polychaete Hyalinoecia artifex (Polychaeta: Onuphidae)

Published online by Cambridge University Press:  15 May 2009

Gerdhard L. Jessen*
Affiliation:
Programa de Postgrado en Oceanografía, Departamento de Oceanografía, Universidad de Concepción, Casilla 160-C, Concepción, Chile Centro de Investigación Oceanográfica en el Pacífico Sur Oriental (COPAS), Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
Renato A. Quiñones
Affiliation:
Programa de Postgrado en Oceanografía, Departamento de Oceanografía, Universidad de Concepción, Casilla 160-C, Concepción, Chile Centro de Investigación Oceanográfica en el Pacífico Sur Oriental (COPAS), Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
Rodrigo R. González
Affiliation:
Programa de Postgrado en Oceanografía, Departamento de Oceanografía, Universidad de Concepción, Casilla 160-C, Concepción, Chile Centro de Investigación Oceanográfica en el Pacífico Sur Oriental (COPAS), Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
*
Correspondence should be addressed to: G.L. Jessen, Programa de Postgrado en Oceanografía, Departamento de Oceanografía, Universidad de Concepción, Casilla 160-C, Concepción, Chile email: [email protected]

Abstract

The enzymatic activity of aerobic and anaerobic metabolic pathways in Hyalinoecia artifex, a polychaete inhabiting the deep ocean, is reported. In addition, the allometry of its anaerobic and aerobic enzymatic activity is analysed. The aerobic metabolism was measured using the electron transport system activity technique (ETS), whereas the anaerobic metabolism was estimated using the activity of lactate dehydrogenase (LDH), octopine dehydrogenase (OPDH), alanopine dehydrogenase (ALPDH), strombine dehydrogenase (STRDH), and ethanol dehydrogenase (EtOHDH). The ETS activity was about 296.18 (µLO2 h−1 g−1), which is within the range described for polychaetes and other benthic metazoans. The anaerobic enzymatic activity expressed as µmol NADH min−1 g−1 was: LDH = 0.35, OPDH = 0.11, ALPDH = 12.66, STRDH = 10.78 and SDH = 0.48. The slope of the allometric relationship between specific aerobic metabolism and body size was −0.35. In the case of the allometric scaling of the anaerobic metabolism, only LDH presented a significant relationship, with a slope of b = 0.44. This positive scaling is consistent with the pattern emerging from the scarce literature on the allometry of anaerobic metabolism in marine biota.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arístegui, J.A. and Montero, M.F. (1995) The relationship between community respiration and ETS activity in the ocean. Journal of Plankton Research 17, 15631571.CrossRefGoogle Scholar
Baldwin, J., Seymour, R.S. and Webb, G.J.W. (1995) Scaling of anaerobic metabolism during exercise in the estuarine crocodile (Crocodylus porosus). Comparative Biochemistry and Physiology 112A, 285293.CrossRefGoogle Scholar
Brown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M. and West, G.B. (2004) Toward a metabolic theory of ecology. Ecology 85, 17711789.CrossRefGoogle Scholar
Calder, W.A. III. (1984) Size, function and life history. Cambridge, MA: Harvard University Press.Google Scholar
Cammen, L.M., Corwin, S. and Christensen, J.P. (1990) Electron transport system (ETS) activity as a measure of benthic macrofaunal metabolism. Marine Ecology Progress Series 65, 171182.CrossRefGoogle Scholar
Childress, J.J. and Somero, G. (1990) Metabolic scaling: a new perspective based on scaling of glycolitic enzyme activities. American Zoologist 30, 161173.CrossRefGoogle Scholar
Childress, J.J. and Thuesen, E.V. (1993) Effects of hydrostatic pressure on metabolic rates on six species of deep-sea gelatinous zooplankton. Limnology and Oceanography 38(3), 665670.CrossRefGoogle Scholar
Diaz, R.J. and Rosenberg, R. (1995) Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanography and Marine Biology: an Annual Review 33, 245303.Google Scholar
Drazen, J.C. and Seibel, B.A. (2007) Depth-related trends in metabolism of benthic and benthopelagic deep-sea fishes. Limnology and Oceanography 52, 23062316.CrossRefGoogle Scholar
González, R.R. and Quiñones, R.A. (2000) Pyruvate oxidoreductases involved in glycolytic anaerobic metabolism of polychaetes from the continental shelf off Central-South Chile. Estuarine, Coastal and Shelf Science 51, 507519.CrossRefGoogle Scholar
González, R.R. and Quiñones, R.A. (2002) LDH activity in Euphausia mucronata and Calanus chilensis: implications for vertical migration behaviour. Journal of Plankton Research 12, 13491356.CrossRefGoogle Scholar
Grieshaber, M., Hardewig, I., Kreutzer, U. and Pörtner, H.-O. (1994) Physiological and metabolic responses to hypoxia in invertebrates. Reviews of Physiology, Biochemistry and Pharmacology 125, 43147.Google ScholarPubMed
Hebbeln, D. and Cruise Participants PUCK (2001) Report and Preliminary Results of R/V SONNE Cruise SO156, Valparaiso (Chile)–Talcahuano (Chile), March 29–May 14, 2001. Berichte, Fachbereich Geowissenshaften, Universitat Bremen, No. 182, 195 pages, Bremen.Google Scholar
Heusner, A.A. (1991) Size and power in mammals. Journal of Experimental Biology 160, 2554.CrossRefGoogle ScholarPubMed
Hochachka, P.W. and Somero, G.N. (1984) Biochemical adaptation. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Ikeda, T. and Fay, E.H. (1981) Metabolic activity of zooplankton from the Antarctic Ocean. Australian Journal of Marine and Freshwater Research 32, 921–30.CrossRefGoogle Scholar
Kirkegaard, J.B. (1995) Bathyal and abyssal polychaetes (errant species). Galathea Reports 17, 756.Google Scholar
Kleiber, M. (1932) Body size and metabolism. Hilgardia 6, 315353.CrossRefGoogle Scholar
Madon, S.P., Schneider, D.W. and Stoeckel, J.A. (1998) In situ estimation of zebra mussel metabolic rates using electron transport system (ETS) assay. Journal of Shellfish Research 17, 195203.Google Scholar
Mangum, C.P. (1972) Temperature sensitivity of metabolism in offshore and intertidal Onuphid polychaetes. Marine Biology 17, 108114.CrossRefGoogle Scholar
Menzies, R.J., George, R.Y. and Rowe, G.T. (1973) Abyssal environment and ecology of the world oceans. New York: John Wiley and Sons.Google Scholar
Mistri, M. (2004) Effects of hypoxia on predator–prey interactions between juvenile Carcinus aestuarii and Musculista senhousia. Marine Ecology Progress Series 275, 211217.CrossRefGoogle Scholar
Nevill, A.M. (1994) The need to scale for differences in body-size and mass—an explanation of Kleiber's 0.75-mass exponent. Journal of Applied Physiology 77, 28702873.CrossRefGoogle ScholarPubMed
Orensanz, J.M. (1990) The eunicemorph polychaete annelids from Antarctic and Sub Antarctic Seas. In Kornicker, L.S. (ed.) Biology of the Antarctic Seas XXI. Antarctic Research Series 52, 5054.Google Scholar
Packard, T.T. and Williams, P.J. (1981) Rates of respiratory oxygen consumption and electron transport in sea surface seawater from the northwest Atlantic. Oceanologia Acta 4, 351358.Google Scholar
Palma, M., Quiroga, E., Gallardo, V.A., Arntz, W., Gerdes, D., Schneider, W. and Hebbeln, D. (2005) Macrobenthic animal assemblages of the continental margin off Chile (22° to 42°S). Journal of the Marine Biological Association of the United Kingdom 85, 233245.CrossRefGoogle Scholar
Pörtner, H.-O. (2002) Environmental and functional limits to muscular exercise and body size in marine invertebrate athletes. Comparative Biochemistry and Physiology 133, 303321.CrossRefGoogle ScholarPubMed
Quiroga, E., Quiñones, R.A., González, R.R., Gallardo, V.A. and Jessen, G. (2007) Aerobic and anaerobic metabolism of Paraprionospio pinnata (Polychaeta: Spionidae) in central Chile. Journal of the Marine Biological Association of the United Kingdom 87, 459463.CrossRefGoogle Scholar
Schiedek, D. (1997) Marenzelleria viridis (Verrill, 1873) (Polychaeta), a new benthic species within European coastal waters: some metabolic features. Journal of Experimental Marine Biology and Ecology 211, 85101.CrossRefGoogle Scholar
Schmidt-Nielsen, K. (1984) Scaling: why is animal size so important? Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Schneider, W., Fuenzalida, R., Rodriguez-Rubio, E. and Garcés-Vargas, J. (2003) Characteristics and formation of eastern South Pacific Intermediate water. Geophysical Research Letters 30, 15811584.CrossRefGoogle Scholar
Seibel, B.A., Thuesen, E.V., Childress, J.J. and Gorodezky, L.A. (1997) Decline in pelagic cephalopod metabolism with habitat depth reflects differences in locomotory efficiency. Biological Bulletin. Marine Biological Laboratory, Woods Hole 192, 262–27.CrossRefGoogle ScholarPubMed
Seibel, B.A., Thuesen, E.V. and Childress, J.J. (1998) Flight of the vampire: ontogenetic gait-transition in Vampyroteuthis infernalis (Cephalopoda: Vampyromorpha). Journal of Experimental Biology 201, 24132424.CrossRefGoogle ScholarPubMed
Simcic, T. and Brancelj, A. (2003) Estimation of the proportion of metabolically active mass in the amphipod Gammarus fossarum. Freshwater Biology 48, 10931099.CrossRefGoogle Scholar
Simcic, T., Lukanc, S. and Brancelj, A. (2005) Comparative study of electron transport system activity and oxygen consumption of amphipods from caves and surface habitats. Freshwater Biology 50, 494501.CrossRefGoogle Scholar
Somero, G. and Childress, J.J. (1990) Scaling of ATP-supplying enzymes, myofibrillar proteins and buffering capacity in fish muscle: relationship to locomotory habit. Journal of Experimental Biology 149, 319333.CrossRefGoogle Scholar
Thuesen, E.V. and Childress, J.J. (1993) Metabolic rates, enzyme activities and chemical compositions of some deep-sea pelagic worms, particularly Nectonemertes mirabilis (Nemertea; Hoplonemertinea) and Poeobius meseres (Annelida; Polychaeta). Deep-sea Research 1 10, 937951.CrossRefGoogle Scholar
Thuesen, E.V. and Childress, J.J. (1994) Oxygen consumption rates and metabolic enzyme activities of oceanic California medusae in relation to body size and habitat depth. Biological Bulletin. Marine Biological Laboratory, Woods Hole 187, 8498.CrossRefGoogle ScholarPubMed
Thuesen, E.V., Mccullough, K.D. and Childress, J.J. (2005) Metabolic enzyme activities in swimming muscle of medusae: is the scaling of glycolytic activity related to oxygen availability? Journal of the Marine Biological Association of the United Kingdom 85, 603611.CrossRefGoogle Scholar
Verrill, A.E. (1880) Notice of recent additions to the marine Invertebrata, of north eastern coast of America, whith descriptions of new genera and species and critical remarks on others (pt. II). Proceedings of the United States National Museum 3, 356405.CrossRefGoogle Scholar
Vetter, R.D., Lynn, E.A., Garza, M. and Costa, A.S. (1994) Depth zonation and metabolic adaptation in dover sole, Microstomus pacificus, and other deep-living flatfishes: factors that affect the sole. Marine Biology 120, 145159.CrossRefGoogle Scholar
Wahle, R.A., Tully, O. and O'Donovan, V. (2001) Environmentally mediated crowding effects on growth, survival and metabolic rate of juvenile American lobsters (Homarus americanus). Australian Journal of Marine and Freshwater Research 52, 11571166.CrossRefGoogle Scholar
West, G.B. and Brown, J.H. (2005) The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. Journal of Experimental Biology 208, 15751592.CrossRefGoogle Scholar
White, C.R., Phillip, C. and Blackburn, T.M. (2007) Allometric exponents do not support a universal metabolic allometry. Ecology 88, 315323.CrossRefGoogle Scholar
Zammit, V.A. (1978) Possible relationship between energy metabolism of muscle and oxygen binding characteristics of haemocyanin of cephalopods. Journal of the Marine Biological Association of the United Kingdom 58, 421424.CrossRefGoogle Scholar
Zar, J.H. (1999) Biostatistical analysis. 4th edition.Upper Saddle River, NJ: Prentice-Hall.Google Scholar