Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-22T17:41:41.384Z Has data issue: false hasContentIssue false

The admission of nutrients from the digestive system into the haemal channels in the sea-star Asterias rubens (L.)

Published online by Cambridge University Press:  11 May 2009

J. J. S. Broertjes
Affiliation:
Laboratory of Chemical Animal Physiology, State University of Utrecht, 8 Padualaan, 3508 TB Utrecht, The Netherlands
G. Posthuma
Affiliation:
Laboratory of Chemical Animal Physiology, State University of Utrecht, 8 Padualaan, 3508 TB Utrecht, The Netherlands
F. B. Beijnink
Affiliation:
Laboratory of Chemical Animal Physiology, State University of Utrecht, 8 Padualaan, 3508 TB Utrecht, The Netherlands
P. A. Voogt
Affiliation:
Laboratory of Chemical Animal Physiology, State University of Utrecht, 8 Padualaan, 3508 TB Utrecht, The Netherlands

Extract

Mucus, leaving the pyloric duct in a continuous flow, is conveyed over the epithelium of the aboral part of the pyloric stomach. There nutrients are resorbed and concentrated into the haemal system, which is in close contact with this part of the stomach. It is supposed that this material consists of nutrients in complex form especially destined for the use of gonad development.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Broertjes, J. J. S. & Posthuma, G., 1978. Direct visualisation of the haemal system in starfish by a staining procedure. Experientia, 34, 12431245.CrossRefGoogle Scholar
Broertjes, J. J. S., Posthuma, G., Den Breejen, P. & Voogt, P. A., 1980. Evidence for an alternative transport route for the use of vitellogenesis in the sea-star Asterias rubens (L.). Journal of the Marine Biological Association of the United Kingdom, 60, 157162.CrossRefGoogle Scholar
Duncombe, W. G., 1963. The colorimetric micro-determination of long-chain fatty acids. Biochemical Journal, 88, 710.CrossRefGoogle ScholarPubMed
Ferguson, J. C., 1970. An autoradiographic study of the translocation and utilization of amino acids by starfish. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 138, 1425.Google Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. Z. & Randall, R. J., 1951. Protein measurement with Folin reagent. Journal of Biological Chemistry, 193, 265273.Google Scholar
Oudejans, R. C. H. M. & Van Der Sluis, I., 1979. Changes in the biochemical composition of the ovaries of the sea star Asterias rubens during its annual reproductive cycle. Marine Biology, 50, 255261.Google Scholar
Schoenmakers, H. J. N., 1979. Steroids and Reproduction of the Female Asterias rubens L. Ph.D. Thesis, State University of Utrecht.Google Scholar
Shaw, S. R., 1977. Glass knife adaptor for cutting epoxy sections on a conventional rotary microtome. Stain Technology, 52, 291293.CrossRefGoogle Scholar
Van Handel, E., 1965. Microseparation of glycogen, sugars and lipids. Analytical Biochemistry, 11, 266271.CrossRefGoogle ScholarPubMed
Van Nes, K., 1950. Benzoëzuur als IJkstof in de Verbrandingscalorimetrie. Ph.D. Thesis, Free University of Amsterdam.Google Scholar
Wadsø, I., 1966. Calculation methods in reaction calorimetry. Science Tools, 13, 3339.Google Scholar
Zøllner, N. & Kirsch, K., 1962. Ueber die quantitative Bestimmung von Lipoïden (Mikromethode) mittels der vielen natürlichen Lipoïden (alien bekannten Plasmalipoïden) gemeinsamen Sulfophosphovanillin-Reaktion. Zeitschrift für die gesamte experimentelle Medizin, 135, 545561.Google Scholar