Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-03T15:27:52.030Z Has data issue: false hasContentIssue false

Trophic structure of the bathyal benthos at an area with evidence of methane seep activity off southern Chile (~45°S)

Published online by Cambridge University Press:  28 January 2014

Germán Zapata-Hernández*
Affiliation:
Laboratorio de Ecosistemas Bentónicos Sub-litorales (ECOBENTS), Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
Javier Sellanes
Affiliation:
Laboratorio de Ecosistemas Bentónicos Sub-litorales (ECOBENTS), Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
Andrew R. Thurber
Affiliation:
College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA Integrative Oceanography Division, Scripps Institution of Oceanography, La Jolla, California, USA
Lisa A. Levin
Affiliation:
Integrative Oceanography Division, Scripps Institution of Oceanography, La Jolla, California, USA Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, La Jolla, California, USA
*
Correspondence should be addressed to: G. Zapata-Hernández, Laboratorio de Ecosistemas Bentónicos Sub-litorales (ECOBENTS), Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile email: [email protected]

Abstract

Through application of carbon (C) and nitrogen (N) stable isotope analyses, we investigated the benthic trophic structure of the upper-slope off southern Chile (~45°S) including a recent methane seep area discovered as part of this study. The observed fauna comprised 53 invertebrates and seven fish taxa, including remains of chemosymbiotic fauna (e.g. chemosymbiotic bivalves and siboglinid polychaetes), which are typical of methane seep environments. While in close-proximity to a seep, the heterotrophic fauna had a nutrition derived predominantly from photosynthetic sources (δ13C > –21‰). The absence of chemosynthesis-based nutrition in the consumers was likely a result of using an Agassiz trawl to sample the benthos, a method that is likely to collect a mix of fauna including individuals from adjacent non-seep bathyal environments. While four trophic levels were estimated for invertebrates, the fish assemblage was positioned within the third trophic level of the food web. Differences in corrected standard ellipse area (SEAC), which is a proxy of the isotopic niche width, yielded differences for the demersal fish Notophycis marginata (SEAC = 5.1‰) and Coelorinchus fasciatus (SEAC = 1.1‰), suggesting distinct trophic behaviours. No ontogenic changes were detected in C. fasciatus regarding food sources and trophic position. The present study contributes the first basic trophic data for the bathyal area off southern Chile, including the identification of a new methane seep area, among the furthest south ever discovered. Such information provides the basis for the proper sustainable management of the benthic environments present along the vast Chilean continental margin.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andrade, H. (1986) Observaciones bioecologicas sobre invertebrados demersales de la zona central de Chile. In Arana, P. (ed.) La pesca en Chile. Valpariso: Escuela de Ciencias del Mar, Universidad Católica de Valpariso, pp. 4156.Google Scholar
Báez, P. and Sellanes, J. (2009) Nuevo registro de Scalpellum projectum (Crustacea: Cirripedia: Thoracica: Scalpellidae) para el talud continental de Chile. Latin American Journal of Aquatic Research 37, 247251.CrossRefGoogle Scholar
Bailly, N. (2013) Notophycis marginata. In Froese, R. and Pauly, D. (eds) FishBase. Available at: http://www.marinespecies.org/aphia.php?p=taxdetails&id=234703 (accessed 27 December 2013).Google Scholar
Barry, J., Buck, K.R., Goffredi, S.K. and Hashimoto, J. (2000) Ultrastructure studies of two chemosynthetic invertebrate–bacterial symbioses (Lamellibrachia sp. and Acharax sp.) from the Hatsushima cold seeps in Sagami Bay, Japan. JAMSTEC Journal of Deep Sea Research 16, 91100.Google Scholar
Bearhop, S., Adams, C., Waldron, S., Fuller, R. and Macleod, H. (2004) Determining trophic niche width: a novel approach using stable isotope analysis. Journal of Animal Ecology 73, 10071012.CrossRefGoogle Scholar
Bernardino, A.F., Levin, L.A., Thurber, A.R. and Smith, C.R. (2012) Comparative composition, diversity and trophic ecology of sediment macrofauna at vents, seeps and organic falls. PLoS ONE 7, e33515. doi: 10.1371/journal.pone.0033515.CrossRefGoogle ScholarPubMed
Bligh, E. and Dyer, W. (1959) A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37, 911917.CrossRefGoogle ScholarPubMed
Bolnick, D., Svanbäck, R., Fordyce, J., Yang, L., Davis, J., Hulsey, C. and Forister, M. (2003) The ecology of individuals: incidence and implications of individual specialization. The American Naturalist 161, 128.CrossRefGoogle ScholarPubMed
Brown, K.M., Bangs, N.L., Froelich, P.N. and Kvenvolden, K.A. (1996) The nature, distribution, and origin of gas hydrate in the Chile Triple Junction region. Earth and Planetary Science Letters 139, 471483.CrossRefGoogle Scholar
Buhl-Mortensen, L., Mortensen, P.B., Armsworthy, S. and Jackson, D. (2007) Field observation of Flabellum spp. and laboratory study of the behaviour and respiration of Flabellum alabastrum. Bulletin of Marine Science 81, 543552.Google Scholar
Buhl-Mortensen, L., Vanreusel, A., Gooday, A.J., Levin, L.A., Priede, I.G., Buhl-Mortensen, P.Gheerardyn, H., King, N.J. and Raes, M. (2010) Biological structures as a source of habitat heterogeneity and biodiversity on the deep ocean margins. Marine Ecology 31, 2150CrossRefGoogle Scholar
Cabana, G. and Rasmussen, J.B. (1996) Comparison of aquatic food chains using nitrogen isotopes. Proceeding of the National Academy of Sciences of the United States of America 93, 1084410847.CrossRefGoogle ScholarPubMed
Cañete, I. and Haüssermann, V. (2012) Colonial life under the Humboldt Current System: deep-sea corals from O'Higgins I seamount. Latin American Journal of Aquatic Research 40, 467472.CrossRefGoogle Scholar
Carlier, A., Riera, P., Amouroux, J.M., Bodiou, J.Y. and Grémare, A. (2007) Benthic trophic network in the Bay of Banyuls-sur-Mer (northwest Mediterranean, France): an assessment based on stable carbon and nitrogen isotopes analysis. Estuarine, Coastal and Shelf Sciences 72, 115.CrossRefGoogle Scholar
Carlier, A., Le Guilloux, E., Olu, K., Sarrazin, J., Mastrototaro, F., Taviani, M. andClavier, J. (2009) Trophic relationships in a deep Mediterranean cold-water coral bank (Santa Maria di Leuca, Ionian Sea). Marine Ecology Progress Series 397, 125137.CrossRefGoogle Scholar
Carlier, A., Ritt, B., Rodrigues, C.F., Sarrazin, J., Olu, K., Grall, J. and Clavier, J. (2010) Heterogeneous energetic pathways and carbon sources on deep eastern Mediterranean cold seep communities. Marine Biology 157, 25452556.CrossRefGoogle Scholar
Carney, R.S. (2010) Stable isotope trophic patterns in echinoderm megafauna in close proximity to and remote from Gulf of Mexico lower slope hydrocarbon seeps. Deep-Sea Research Part II 57, 19651971.CrossRefGoogle Scholar
Cartes, J.E. and Abelló, P. (1992) Comparative feeding habits of polychelid lobsters in the Western Mediterranean deep-sea communities. Marine Ecology Progress Series 84, 139150.CrossRefGoogle Scholar
Castilla, J.C. and Paine, R. (1987) Predation and community organization on Eastern Pacific, temperate zone, rocky intertidal shores. Revista Chilena de Historia Natural 60, 131151.Google Scholar
Cordes, E.E., Cunha, M.R., Galéron, J., Mora, C., Olu-Le Roy, K., Sibuet, M., Van Gaever, S., Vanreusel, A. and Levin, L.A. (2010) The influence of geological, geochemical, and biogenic habitat heterogeneity on seep biodiversity. Marine Ecology 31, 5165.CrossRefGoogle Scholar
Decker, C. and Olu, K. (2011) Habitat heterogeneity influences cold-seep macrofaunal communities within and among seeps along the Norwegian margin—Part 2: contribution of chemosynthesis and nutritional patterns. Marine Ecology 33, 231245. doi:10.1111/j.1439–0485.2011.00486.x.CrossRefGoogle Scholar
Demopoulos, A.W.J., Gualtieri, D. and Kovacs, K. (2010) Food-web structure of seep sediment macrobenthos from the Gulf of Mexico. Deep-Sea Research II 57, 19721981.CrossRefGoogle Scholar
Denisenko, S., Denisenko, N., Lehtonen, K., Andersin, A. and Laine, A. (2003) Macrozoobenthos of the Pechora Sea (SE Barents Sea): community structure and spatial distribution in relation to environmental conditions. Marine Ecology Progress Series 258, 109123.CrossRefGoogle Scholar
De Pol-Holz, R., Robinson, R.S., Hebbeln, D., Sigman, D.M. and Ulloa, O. (2009) Controls on sedimentary nitrogen isotopes along the Chile margin. Deep-Sea Research II 56, 10421054.CrossRefGoogle Scholar
Etnoyer, P. and Morgan, L.E. (2005) Habitat-forming deep-sea corals in the Northeast Pacific Ocean. In Freiwald, A. and Roberts, J.M. (eds) Cold-water corals and ecosystems. Berlin: Springer-Verlag, pp. 331343.CrossRefGoogle Scholar
Fauchald, K. and Jumars, P. (1979) The diet of worms: a study of Polychaete feeding guilds. Oceanography and Marine Biology: an Annual Review 17, 193284.Google Scholar
Fitch, J.E. and Lavenberg, R.J. (1968) Deep-water teleostean fishes of California. California Natural History Guides: 25. Berkeley, CA: University of California Press.Google Scholar
Folch, J., Lees, M. and Sloane-Stanley, G. (1957) A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry 226, 497509.CrossRefGoogle ScholarPubMed
Fraussen, K. and Sellanes, J. (2008) Three new buccinid species (Gastropoda: Neogastropoda) from Chilean deep-water, including one from a methane seep. Veliger 50, 97106.Google Scholar
Fraussen, K., Sellanes, J. and Stahlschmidt, P. (2012) Eosipho zephyrus, a new species (Gastropoda: Buccinidae) from deep water off Chile. Nautilus 126, 3337.Google Scholar
Frédérich, B., Fabri, G., Lepoint, G., Vandewalle, P. and Parmentier, E. (2009) Trophic niches of thirteen damselfishes (Pomacentridae) at the Grand Récif of Toliara, Madagascar. Ichthyological Research 56, 1017.CrossRefGoogle Scholar
Fry, B. and Sherr, E.B. (1984) δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contributions in Marine Science 27, 1347.Google Scholar
Gage, J.D. (2003) Food inputs, utilization, carbon flow and energetic. In Tyler, P.A. (ed.) Ecosystems of the deep oceans. Ecosystems of the World 28. New York: Elsevier, pp. 313380.Google Scholar
Gallardo, V.A., Palma, M., Carrasco, F.D, Gutiérrez, D., Levin, L.A. and Cañete, J.I. (2004) Macrobenthic zonation caused by the oxygen minimum zone on the shelf and slope off central Chile. Deep-sea Research Part II 51, 24752490.CrossRefGoogle Scholar
Gartner, J., Crabtree, R. and Sulak, K. (1997) Feeding at depth. In Randall, D.J. and Farrell, A.P. (eds) Deep-sea fishes. San Diego, CA: Academic Press, pp. 141.Google Scholar
German, C.R., Ramirez-Llodra, E., Baker, M.C., Tyler, P.A. and the ChEss Scientific steering Committee (2011) Deep-water chemosynthetic ecosystem research during the Census of Marine Life decade and beyond: a proposed deep-ocean road map. PloS ONE 6, e23259. doi:10.1371/journal.pone.0023259.CrossRefGoogle ScholarPubMed
Gracia, A., Díaz, J.M. and Ardila, N.E. (2005) Quitones (Mollusca: Polyplacophora) del Mar Caribe Colombiano. Biota Colombiana 6, 117125.Google Scholar
Guzmán, G., Báez, P. and Sellanes, J. (2009) Primer registro de Trichopeltarion corallinus (Faxon, 1893) para el mar de Chile y nuevo registro de T. hystricosus (Garth, en Garth & Haig, 1971) (Decapoda: Brachyura: Atelecyclidae). Latin American Journal of Aquatic Research 37, 275279.CrossRefGoogle Scholar
Guzmán, G.L. and Sellanes, J. (2011) Spongicoloides sp. aff. a Spongicoloides galapagensis (Decapoda: Stenopodidea: Spongicolidae): una nueva especie para la carcinofauna chilena y primer registro de un estenopodido en aguas del margen continental de Chile. Latin American Journal of Aquatic Research 39, 613616.CrossRefGoogle Scholar
Hebbeln, D., Marchant, M., Freudenthal, T. and Wefer, G. (2000) Surface sediment distribution along the Chilean continental slope related to upwelling and productivity. Marine Geology 164, 119137.CrossRefGoogle Scholar
Holmes, A., Oliver, P.G. and Sellanes, J. (2005) A new species of Lucinoma (Bivalvia: Lucinoidea) from a methane gas seep off the southwest coast of Chile. Journal of Conchology 38, 673682.Google Scholar
Houart, R. and Sellanes, J. (2006) New data on recently described Chilean trophonines (Gastropoda: Muricidae), with the description of a new species and notes of their occurrence at a cold-seep site. Zootaxa 1222, 5368.CrossRefGoogle Scholar
Houart, R. and Sellanes, J. (2010) Description of a new Coronium s.l. (Gastropoda: Muricidae: Trophoninae) from south-central Chile and a brief survey of the genus Coronium Simone, 1996. Zootaxa 2346, 6268.CrossRefGoogle Scholar
Iken, K., Brey, T., Wand, U., Voigt, J. and Junghans, P. (2001) Food web structure of the benthic community at the Porcupine Abyssal Plain (NE Atlantic): a stable isotope analysis. Progress in Oceanography 50, 383405.CrossRefGoogle Scholar
Iken, K., Bluhm, B. and Dunton, K. (2010) Benthic food-web structure under differing water mass properties in the southern Chukchi Sea. Deep-Sea Research Part II 57, 7185.CrossRefGoogle Scholar
Jackson, A.L., Parnell, A.C., Inger, R. and Bearhop, S. (2011) Comparing isotopic niche widths among and within communities: SIBER—Stable Isotope Bayesian Ellipses in R. Journal of Animal Ecology 80, 595602.CrossRefGoogle ScholarPubMed
Jackson, M.C., Donohue, I., Jackson, A.L., Britton, J.R., Harper, D.M. and Grey, J. (2012) Population-level metrics of trophic structure based on stable isotopes and their application to invasion ecology. PLoS ONE 7, e31757. doi:10.1371/journal.pone.0031757.CrossRefGoogle ScholarPubMed
Jantzen, C., Laudien, J., Sokol, S., Forsterra, G., Haussermann, V., Kupprat, F. and Richter, C. (2013) In situ short-term growth rates of a cold-water coral. Marine and Freshwater Research 64, 631641.CrossRefGoogle Scholar
Klaucke, I., Weinrebe, W., Linke, P., Kläschen, D. and Bialas, J. (2012) Sidescan sonar imagery of widespread fossil and active cold seeps along the central Chilean continental margin. Geo-Marine Letters 32, 489499. doi: 10.1007/s00367–012–0283–1.CrossRefGoogle Scholar
Latyshev, N.A., Khardin, A.S., Kasyanov, S.P. and Ivanova, M.B. (2004) A study in the feeding ecology of chitons using analysis of gut contents and fatty acid markers. Journal of Molluscan Studies 70, 225230.CrossRefGoogle Scholar
Layman, C., Arrington, D., Montaña, C. and Post, D. (2007) Can stable isotope ratios provide for community- wide measures of trophic structure? Ecology 88, 4248.CrossRefGoogle ScholarPubMed
Levin, L.A. and Michener, R.H. (2002) Isotopic evidence for chemosynthesis-based nutrition of macrobenthos: the lightness of being at Pacific methane seeps. Limnology and Oceanography 47, 13361345.CrossRefGoogle Scholar
Levin, L.A. (2005) Ecology of cold seep sediments: interactions of fauna with flow, chemistry and microbes. Oceanography and Marine Biology: an Annual Review 43, 146.Google Scholar
Levin, L.A. and Mendoza, G. (2007) Community structure and nutrition of deep methane seep macroinfauna from the Aleutian Margin and Florida Escarpment, Gulf of Mexico. Marine Ecology 28, 131151.CrossRefGoogle Scholar
Levin, L.A. and Sibuet, M. (2012) Understanding continental margin biodiversity: a new imperative. Annual Review of Marine Science 4, 79112.CrossRefGoogle ScholarPubMed
Long, B.G. and Poiner, I.R. (1994) Infaunal benthic community structure and function in the Gulf of Carpentaria, Northern Australia. Australian Journal of Marine and Freshwater Research 45, 293316.CrossRefGoogle Scholar
Lyons, W.G. and Moretzsohn, F. (2009) Polyplacophora (Mollusca) of the Gulf of Mexico. In Felder, D.L. and Camp, D.K. (eds) Gulf of Mexico—origins, waters, and biota. Biodiversity. College Station, TX: Texas A&M University Press, pp. 569578.Google Scholar
MacAvoy, S., Carney, R., Fisher, C. and Macko, S. (2002) Use of chemosynthetic biomass by large mobile benthic predators in the Gulf of Mexico. Marine Ecology Progress Series 225, 6578.CrossRefGoogle Scholar
MacAvoy, S., Macko, S. and Carney, R. (2003) Links between chemosynthetic production and mobile predators on the Louisiana continental slope: stable carbon isotopes of specific fatty acids. Chemical Geology 20, 229237.CrossRefGoogle Scholar
Macpherson, E. and Segonzac, M. (2005) Species of the genus Munidopsis (Crustacea, Decapoda, Galatheidae) from the deep Atlantic Ocean, including cold-seep and hydrothermal vent areas. Zootaxa 1095, 160.CrossRefGoogle Scholar
Mauna, A.C., Acha, E.M., Lasta, M.L. and Iribarne, O.O. (2011) The influence of a large SW Atlantic shelf-break frontal system on epibenthic community composition, trophic guilds, and diversity. Journal of Sea Research 66, 3946.CrossRefGoogle Scholar
McClintock, J.B. (1994) Trophic biology of Antartic shallow-water echinoderms. Marine Ecology Progress Series 111, 191202.CrossRefGoogle Scholar
Melzer, R. (2009) Pycnogonida- Arañas de mar. In Häussermann, V. and Fösterra, G. (eds) Fauna marina Bentónica de la Patagonia chilena. Puerto Montt, Chile: Nature in Focus, pp. 583590.Google Scholar
Meyer, M. and Smale, M.J. (1991) Predation patterns of demersal teleosts from the Cape south and west coasts of South Africa. 2. Benthic and epibenthic predators. South African Journal of Marine Science 11, 409442.CrossRefGoogle Scholar
Minagawa, M. and Wada, E. (1984) Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochimica et Cosmochimica Acta 48, 11351140.CrossRefGoogle Scholar
Morales, E. (2003) Methane hydrates in the Chilean continental margin. Biotechnology Issues for Developing Countries 6, 8084.Google Scholar
Murina, G.V. (1984) Ecology of Sipuncula. Marine Ecology Progress Series 17, 17.CrossRefGoogle Scholar
Norkko, A., Thrush, S.F., Cummings, V.J., Gibbs, M.M., Andrew, N.L., Norkko, J. and Schwarz, A.M. (2007) Trophic structure of coastal Antarctic food webs associated with changes in sea ice and food supply. Ecology 88, 28102820.CrossRefGoogle ScholarPubMed
Oliver, P.G. and Sellanes, J. (2005) Thyasiridae from a methane seepage area off Concepción, Chile. Zootaxa 1092, 120.CrossRefGoogle Scholar
Orejas, C. (2001) Role of benthic cnidarians in energy transference processes in the Southern ocean marine ecosystem (Antarctica). Berichte Polarforschung Meeresforschung 395, 1186.Google Scholar
Palma, M., Quiroga, E., Gallardo, V.A., Arntz, W., Gerdes, D., Schneider, W. and Hebbeln, D. (2005) Macrobenthic animal assemblages of the continental margin off Chile (22° to 42°S). Journal of the Marine Biological Association of the United Kingdom 85, 233245.CrossRefGoogle Scholar
Post, D.M. (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83, 703718.CrossRefGoogle Scholar
Quevedo, M., Svanback, R. and Eklov, P. (2009) Intrapopulation niche partitioning in a generalist predator limits food web connectivity. Ecology 90, 22632274.CrossRefGoogle Scholar
Quiroga, E. and Sellanes, J. (2009) Two new polychaete species living in the mantle cavity of Calyptogena gallardoi (Bivalvia: Vesicomyidae) at a methane seep site off central Chile (~36°S). Scientia Marina 73, 399407.CrossRefGoogle Scholar
Quiroga, E., Sellanes, J., Arntz, W., Gerdes, D., Gallardo, V.A. and Hebbeln, D. (2009) Benthic megafaunal and demersal fish assemblages on the Chilean continental margin: the influence of the oxygen minimum zone on bathymetric distribution. Deep-Sea Research Part II 56, 11121123.CrossRefGoogle Scholar
Quiroga, E. and Levin, L.A. (2010) Eunice pennata (Polychaeta: Eunicidae) from active and passive cold seep sites in central and Southern Chile (36°–46°S). Anales Instituto Patagonia (Chile) 38, 3137.CrossRefGoogle Scholar
R Development Core Team (2013) R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Available at: http://www.R-project.org/ (accessed 27 December 2013).Google Scholar
Ribes, M., Coma, R. and Gili, J.–M. (1999) Natural diet and grazing rate of the températe sponge Dysidea avara (Demospongiae, Dendroceratida) throughout an annual cycle. Marine Ecology Progress Series 176, 179190.CrossRefGoogle Scholar
Rodrigues, C.F., Hilário, A. and Cunha, M.R. (2012) Chemosymbiotic species from the Gulf of Cadiz (NE Atlantic): distribution, life styles and nutritional patterns. Biogeosciences Discussion 9, 1734717376Google Scholar
Romero, M.C., Lovrich, G.A., Tapella, F. and Thatje, S. (2004) Feeding ecology of the crab Munida subrugosa (Decapoda: Anomura: Galatheidae) in the Beagle Channel, Argentina. Journal of the Marine Biological Association of the United Kingdom 84, 359365.CrossRefGoogle Scholar
Sahling, H., Galkin, S.V., Salyuk, A., Greinert, J., Foerstel, H., Piepenburg, D. and Suess, E. (2003) Depth related structure and ecological significance of cold-seep communities—a case study from the Sea of Okhotsk. Deep-Sea Research Part I 50, 13911409.CrossRefGoogle Scholar
Schlitzer, R. (2012) Ocean Data View. Available at: http://odv.awi/de/2012Google Scholar
Schwabe, E. and Sellanes, J. (2010) Revision of Chilean bathyal chitons (Mollusca: Polyplacophora) associated with cold-seeps, including description of a new species of Leptochiton (Leptochitonidae). Organism Diversity and Evolution 10, 3155.CrossRefGoogle Scholar
Sellanes, J., Quiroga, E. and Gallardo, V.A. (2004) First direct evidences of methane seepage and associated chemosynthetic communities in the bathyal zone off Chile. Journal of the Marine Biological Association of United Kingdom 84, 10651066.CrossRefGoogle Scholar
Sellanes, J. and Krylova, E. (2005) A new species of Calyptogena (Bivalvia: Vesicomyidae) from a recently discovered methane seepage area off Concepción Bay, Chile (~36°S). Journal of the Marine Biological Association of the United Kingdom 85, 969976.CrossRefGoogle Scholar
Sellanes, J., Quiroga, E. and Neira, C. (2008) Megafauna community structure and trophic relationships at the recently discovered Concepción Methane Seep Area, Chile, ~36° S. ICES Journal of Marine Science 65, 11021111.CrossRefGoogle Scholar
Sellanes, J., Neira, C., Quiroga, E. and Teixido, N. (2010) Diversity patterns along and across the Chilean margin: a continental slope encompassing oxygen gradients and methane seep benthic habitats. Marine Ecology 31, 111124.CrossRefGoogle Scholar
Sellanes, J., Pedraza-García, M. and Zapata-Hernández, G. (2012) Do the methane seep areas constitute aggregation spots for the Patagonian toothfish (Dissostichus eleginoides) off central Chile? Latin American Journal of Aquatic Research 40, 980991.CrossRefGoogle Scholar
Sepúlveda, J., Pantoja, S. and Hughen, K.A. (2011) Sources and distribution of organic matter in northern Patagonia fjords, Chile (~44–47°S): a multi-tracer approach for carbon cycling assessment. Continental Shelf Research 31, 315329.CrossRefGoogle Scholar
Shick, J.M., Edwards, K.C. and Dearborn, J.H. (1981) Physiological ecology of the deposit-feeding sea star Ctenodiscus crispatus: ciliated surfaces and animal–sediment interactions. Marine Ecology Progress Series 19, 165184.CrossRefGoogle Scholar
Sibuet, M. and Vangriesheim, A. (2009) Deep-sea environment and biodiversity of the West African Equatorial margin. Deep-Sea Research Part II 56, 21562168.CrossRefGoogle Scholar
Sielfeld, W. and Vargas, M. (1999) Review of marine fish zoogeography of Chilean Patagonia (42°–57°S). Scientia Marina 63, 451463.CrossRefGoogle Scholar
Sirenko, B.I. (2001) Deep-sea chitons (Mollusca, Polyplacophora) from sunken wood off New Caledonia and Vanuatu. Mémoires du Muséum National d' Histoire Naturelle 185, 3971.Google Scholar
Stergiou, K.I and Karpouzi, V.S. (2002) Feeding habits and trophic levels of Mediterranean fish. Review in Fish Biology and Fisheries 11, 217254.CrossRefGoogle Scholar
Stevens, D.W. and Dunn, M.R. (2011) Different food preferences in four sympatric deep-sea macrourid fishes. Marine Biology 158, 5972.CrossRefGoogle Scholar
Stöhr, S.O'Hara, T.D. and Thuy, B. (2012) Global Diversity of Brittle Stars (Echinodermata: Ophiuroidea). PLoS ONE 7, e31940. doi:10.1371/journal.pone.0031940.CrossRefGoogle ScholarPubMed
Taylor, M. and Mazumder, D. (2010) Stable isotopes reveal post-release trophodynamic and ontogenetic changes in a released finfish, mulloway (Argyrosomus japonicus). Marine and Freshwater Research 61, 302308.CrossRefGoogle Scholar
Thiel, M. and Kruse, I. (2001) Status of the Nemertea as predators in marine ecosystems. Hydrobiologia 456. In Junoy, J., García-Corrales, P. and Thiel, M. (eds) 5th International Conference on Nemertean Biology. Rotterdam, The Netherlands: Kluwer Academic Publishers. pp. 2132.Google Scholar
Thurber, A.R., Kröger, K., Neira, C., Wiklund, H. and Levin, L.A. (2010) Stable isotope signatures and methane use by New Zealand cold seep benthos. Marine Geology 272, 260269.CrossRefGoogle Scholar
Thurber, A.R., Levin, L.A., Orphan, V.J. and Marlow, J. (2012) Archaea in metazoan diets: implications for food webs and biogeochemical cycling. ISME Journal 6, 16021612.CrossRefGoogle ScholarPubMed
Thurber, A.R., Levin, L.A., Rowden, A.A., Sommer, S., Linke, P. and Kröεr, K. (2013) Microbes, macrofauna, and methane: a novel seep community fueled by aerobic methanotrophy. Limnology and Oceanography 58, 16401656.CrossRefGoogle Scholar
Treude, T., Kiel, S., Linke, P., Peckmann, J. and Goe dert, J.L. (2011) Elasmobranch egg capsules associated with modern and ancient cold seeps: a nursery for marine deep-water predators. Marine Ecology Progress Series 437, 175181.CrossRefGoogle Scholar
Van Dover, C.L., Aharon, P., Bernhard, J.M., Caylor, E., Doerries, M., Flickinger, W., Gilhooly, W., Goffredi, S.K, Knick, K.E., Macko, S.A., Rapoport, S., Raulfs, E.C., Ruppel, C., Salerno, J.L., Seitz, R.D., Sen Gupta, B.K., Shank, T., Turnipseed, M. and Vrijenhoek, R. (2003) Blake Ridge methane seeps: characterization of a soft-sediment, chemosynthetically based ecosystem. Deep-Sea Research I 50, 281300.CrossRefGoogle Scholar
Van Dover, C.L. (2008) Stable isotope studies in marine chemoautotrophically based ecosystems: an update. In Michener, R. and Lajtha, K. (eds) Stable isotopes in ecology and environmental science. 2nd edition. Oxford: Blackwell.Google Scholar
Vilvens, C. and Sellanes, J. (2006) Descriptions of Otukaia crustulum new species (Gastropoda: Trochoidea: Calliostomatidae) and Margarites huloti new species (Gastropoda: Trochoidea: Trochidae) from a methane seep area off Chile. Nautilus 120, 1520.Google Scholar
Vilvens, C. and Sellanes, J. (2010) Description of Calliotropis ceciliae new species (Gastropoda: Chilodontidae: Calliotropinae) from off Chile. Nautilus 124, 107111.Google Scholar
Vinuesa, J.H. and Varisco, M. (2007) Trophic ecology of the lobster krill Munida gregaria in San Jorge Gulf, Argentina. Investigaciones Marinas, Valparaíso 35, 2534.Google Scholar
Warén, A., Nakano, T. and Sellanes, J. (2011) A new species of Iothia (Gastropoda: Lepetidae) from Chilean methane seeps, with comments on the accompanying gastropod fauna. Nautilus 125, 114.Google Scholar
Waseda, A. and Didyk, B. (1995) Isotope compositions of gases in sediments from the Chile Continental Margin. In Lewis, S.D., Behrmann, J.H., Musgrave, R.J. and Cande, S.C. (eds) Proceedings of the Ocean Drilling Program, Scientific Results 141, 307312.Google Scholar
Yau, C., George, M.J.A., Coggan, R.A. and Criado-Delgado, J.A. (1996) A preliminary study of two species of flatfish (family: Bothidae) from the south-west Atlantic. Journal of Fish Biology 49 (Supplement A), 330336.CrossRefGoogle Scholar
Zapata-Hernández, G., Sellanes, J., Thurber, A.R., Levin, L.A., Chazalon, F. and Linke, P. (2013) New insights on the trophic ecology of bathyal communities from the methane seep area off Concepción, Chile (~36° S). Marine Ecology. doi: 10.1111/maec.12051.Google Scholar