Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-22T17:40:31.653Z Has data issue: false hasContentIssue false

Trophic Sources and Pathways to the Developing Gametes of Pecten Maximus (Bivalvia: Pectinidae)

Published online by Cambridge University Press:  11 May 2009

Marcel Le Pennec
Affiliation:
Laboratoire de Biologie Marine, Université de Bretagne Occidentale, 29287 Brest Cedex, France Also: Département de Biologie et Centre de Recherches et d/Études sur l'Environnement, Université de Moncton, Moncton, New Brunswick, Canada
Peter Gerard Beninger
Affiliation:
Laboratoire de Biologie Marine, Université de Bretagne Occidentale, 29287 Brest Cedex, France Also: Département de Biologie et Centre de Recherches et d/Études sur l'Environnement, Université de Moncton, Moncton, New Brunswick, Canada
Germaine Dorange
Affiliation:
Laboratoire de Biologie Marine, Université de Bretagne Occidentale, 29287 Brest Cedex, France Also: Département de Biologie et Centre de Recherches et d/Études sur l'Environnement, Université de Moncton, Moncton, New Brunswick, Canada
Yves Marie Paulet
Affiliation:
Laboratoire de Biologie Marine, Université de Bretagne Occidentale, 29287 Brest Cedex, France Also: Département de Biologie et Centre de Recherches et d/Études sur l'Environnement, Université de Moncton, Moncton, New Brunswick, Canada

Extract

Ultrastructural, histological and histochemical studies were performed on the gonad of adult Pecten maximus at various intervals during the reproductive cycle in St Brieuc Bay, France, in order to understand better the sources and transfers of energy to developing gametes in scallops. In addition to the well-known pathways of energy acquisition through feeding and transfer of somatic reserves, a number of novel pathways were demonstrated. These were grouped into two categories: atretic recycling and intestinal loop transfer. Evidence is presented for the recovery of lytic material (resulting from gamete atresia) in the gonad acini, gonoducts, and integument; and the direct transfer of metabolites from the gonad intestinal loop to the developing gametes via vesicular cell-haemocyte couples, which appear to follow fibrous pathways within the loose connective tissue extending from the base of the intestinal epithelium to the acini. A schematic diagram summarizes the sources and transfer mechanisms of the energy exchanges involving the developing gametes in Pecten maximus.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adachi, K. 1979. Seasonal changes of the protein level in the adductor muscle of the clam, Tapes philippinarum (Adams and Reeve) with reference to the reproductive seasons. Comparative Biochemistry and Physiology, 64A, 8589.Google Scholar
Albertini, L. 1985. Recherches Cytologiques, Cytochimiques et Expérimentales sur l'Ovogenèse de la Moule Mytilus edulis L. Thèse de 3ième cycle, Université de Caen.Google Scholar
Ansell, A.D. 1974. Seasonal changes in biochemical composition of the bivalve Chlamys septemradiata from the Clyde Sea area. Marine Biology, 25, 8599.CrossRefGoogle Scholar
Barber, B.J. & Blake, N.J. 1981. Energy storage and utilization in relation to gametogenesis in Argopecten irradians concentricus (Say). Journal of Experimental Marine Biology and Ecology, 52, 121134.Google Scholar
Barber, B.J. & Blake, N.J. 1983. Growth and reproduction of the bay scallop, Argopecten irradians (Lamarck) at its southern distributional limit. journal of Experimental Marine Biology and Ecology, 66, 247256.Google Scholar
Barber, B.J. & Blake, N.J. 1985. Intra-organ biochemical transformations associated with oogenesis in the bay scallop, Argopecten irradians concentricus (Say), as indicated by C incorporation. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 168, 3949.Google Scholar
Bayne, B.L. 1976. Aspects of reproduction in bivalve molluscs. In Estuarine Processes, vol. 1 (ed. Wiley, M.) pp. 432448. New York: Academic Press.Google Scholar
Bayne, B.L.Salked, P.N. & Worrall, C.M. 1983. Reproductive effort and value in different populations of the marine mussel, Mytilus edulis L. Oecologia, 37, 137162.Google Scholar
Beninger, P.G. & Lucas, A. 1984. Seasonal variations in condition, reproductive activity, and gross biochemical composition of two species of adult clam reared in common habitat: Tapes decussatus L. (Jeffreys) and Tapes philippinarumi (Adams&Reeve). Journal of Experimental Marine Biology and Ecology, 79, 1937.Google Scholar
Beninger, P.G. 1987. A qualitative and quantitative study of the reproductive cycle of the giant scallop, Placopecten magellanicus, in the Bay of Fundy (New Brunswick, Canada). Canadian journal of Zoology, 65, 495498.Google Scholar
Besnard, J.Y. 1988. Etude des constituants lipidiques dans la gonade femelle et les larves de Pecten maximus L. (Mollusque Lamellibranche). Thèse de doctorat, Université de Caen, France.Google Scholar
Bevelander, G. & Nakahara, H. 1966. Correlation of lysosomal activity and ingestion by mantle epithelium. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 131, 7682.CrossRefGoogle ScholarPubMed
Burstone, M.S. & Folk, J.E. 1956. Histochemical demonstration of aminopeptidase. Journal of Histochemistry and Cytochemistry, 4, 217226.Google Scholar
Chayen, J.Bitensky, L.Butcher, R.G. & Pulter, L.W. 1969. A Guide to Practical Histochemistry. Edinburgh: Oliver & Boyd.Google Scholar
Coe, W.R. 1943. Development of the primary gonad and differentiation of sexuality in Teredo navalis and other pelecypod mollusks. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 84, 178186.Google Scholar
Comely, C.A. 1974. Seasonal variations in the flesh weights and biochemical content of the scallop Pecten maximus L. in the Clyde sea area. Journal du Conseil, 35, 281295.Google Scholar
Dorange, G. & Lepennec, M. 1989. Ultrastructural study of oogenesis and oocytic degeneration in Pecten maximus from the Bay of St Brieuc. Marine Biology, 103, 339348.CrossRefGoogle Scholar
Dorange, G. 1989. Les Gamètes de Pecten maximus L. (Mollusca, Bivalvia). Thèse de doctorat de l'Universite de Bretagne Occidentale, France.Google Scholar
Ebble, A.Reside, M. & Auletta, L. 1990. Cytology and time-lapse cinematography of hemocytes of the soft-shell clam, Mya arenaria. Journal of Shellfish Research, 8, 468. [Abstract.]Google Scholar
Epp, J.Bricelj, M.V. & Malouf, R.E. 1988. Seasonal partitioning and utilization of energy reserves in two age classes of the bay scallops Argopecten irradians irradians (Lamarck). Journal of Experimental Marine Biology and Ecology, 121, 113136.Google Scholar
Gabbott, P.A. 1975. Storage cycles in marine bivalve molluscs: a hypothesis concerning the relationship between glycogen metabolism and gametogenesis. In Proceedings of the 9th European Marine Biological Symposium (ed. Barnes, H.) pp. 191211. Aberdeen: Aberdeen University Press.Google Scholar
Gabbott, P.A 1983. Development and seasonal metabolic activities in marine molluscs. In The Mollusca, vol. 2 (ed. Hochachka, P.W.) pp. 165217. London: Academic Press.Google Scholar
Gabe, M 1968. Techniques Histologiques. Paris: Masson et Cie.Google Scholar
Giese, A.C & Pearse, J.S 1979. Reproduction of Marine Invertebrates, vol. V: Pelecypods and Lesser Classes. New York: Academic Press.Google Scholar
Goddard, C.K & Martin, A.W 1966. Carbohydrate metabolism. In Physiology of Mollusca, vol. 2 (ed. Wilbur, K.M. and Yonge, CM.), pp. 275308. New York: Academic Press.Google Scholar
Herlin-Houtteville, P & Lubet, P 1975. The sexuality of pelecypod molluscs. In Intersexuality in the Animal Kingdom. Berlin (ed. Reinboth, R.), pp. 179187, Heidelberg, New York: Springer-Verlag.Google Scholar
Herry, A & Lepennec, M 1987. Ultrastructure de la gonade d'un Mytilidae hydrothermal profond de la ride du Pacifique Oriental. Haliotis, 16, 295307.Google Scholar
Holland, D.L 1978. Lipid reserves and energy metabolism in the larvae of benthic marine invertebrates. Advances in Marine Biology, 14, 85123.Google Scholar
Jong-Brink, M.De, Boer, H.H & Joosse, J. 1983. Mollusca. In Reproductive Biology of Invertebrates, vol. 1: Oogenesis, Oviposition and Oosorption (ed. Adiyodi, K.G. and Adiyodi, R.G.), pp. 297355. Chichester: John Wiley.Google Scholar
Lison, L 1960. Histochimie et Cytochimie Animates. Principes et Méthodes. Paris: Gauthier-Villard.Google Scholar
Lowe, D.MMoore, M.N & Bayne, B.L 1982. Aspects of gametogenesis in the marinemussel Mytilus edulis L. Journal of the Marine Biological Association of the United Kingdom, 62, 133145.Google Scholar
Lubet, PBesnard, J. YFaveris, R & Robbins, I 1987. Physiologie de la reproduction de la coquille St-Jacques (Pecten maximus L.) Oceanis, 13, 265290.Google Scholar
Lucas, A 1971. Les gametes des mollusques. Haliotis, 1, 185214.Google Scholar
Machin, J 1977. Role of integument in molluscs. In Transport of Ions and Water in Animals (ed. Gupta, B.L. et al.) pp. 735762. New York: Academic Press.Google Scholar
Mackie, G.L 1984. Bivalves, In The Mollusca, vol. 7 Reproduction (ed. Wilbur, K.M.). Orlando: Academic Press.Google Scholar
Mathers, N.F 1973. A comparative histochemical survey of enzymes associated with the processes of digestion in Ostrea edulis and Crassostrea angulata (Mollusca: Bivalvia). Journal of Zoology, 169, 169179.Google Scholar
Maxwell, W.L 1983. Mollusca. In Reproductive Biology of Invertebrates, vol. 2. Spermatogenesis and Sperm Function (ed. Adiyodi, K.G. and Adiyodi, R.G.), pp. 275319. Chichester: John Wiley.Google Scholar
Moore, M.N 1976. Cytochemical demonstration of latency of lysosomal hydrolases in digestive cells of the common mussel, Mytilus edulis, and changes induced by thermal stress. Cell and Tissue Research, 175, 279287.Google Scholar
Morton, B.S 1983. Feeding and digestion in Bivalvia. In The Mollusca, vol. 5. Physiology, part 2 (ed. Saleuddin, A.S.M. and Wilbur, K.M.), pp. 65147. New York: Academic Press.CrossRefGoogle Scholar
Morvan, C & Ansell, A.D 1988. Stereological methods applied to the reproductive cycle of Tapes rhomboides. Marine Biology, 97, 355364.CrossRefGoogle Scholar
Motavkine, P.A & Varaksine, A.A 1989. La reproduction chez les mollusques bivalves: role du systéme nerveux et régulation. Rapports scientifiques et techniques de l'IFREMER, no.10, 250 pp.Google Scholar
Nakahara, H & Bevelander, G 1967. Ingestion of particulate matter by the outer surface cells of the mollusc mantle. Journal of Morphology, 122, 139146.CrossRefGoogle ScholarPubMed
Paulet, Y.M 1990. Rôle de la Reproduction dans le Déterminisme du Recrutement chez Pecten maximus (L.) de la Baie de St Brieuc. Thése de doctorat, Université de Bretagne Occidentale, France.Google Scholar
Paulet, Y.MLucas, A & Gerard, A 1988. Reproduction and larval development in two Pecten maximus (L.) populations from Britanny. Journal of Experimental Marine Biology and Ecology, 119, 145156.CrossRefGoogle Scholar
Payne, D.WThorpe, N. A & Donaldson, E 1972. Cellulolytic activity and a study of the bacterial population in the digestive tract of Scrobicularia plana (Da Costa). Proceedings of the Malacological Society of London, 40, 147160.Google Scholar
Pipe, R.K & Moore, M.N 1985. The ultrastructural localization of lysosomal acid hydrolases in developing oocytes of the common marine mussel Mytilus edulis. Histochemical Journal, 17, 939949.Google Scholar
Pipe, R.K 1987a. Ultrastructural and cytochemical study on interactions between nutrient storage cells and gametogenesis in the mussel Mytilus edulis. Marine Biology, 96, 519528.Google Scholar
Pipe, R.K 1987b. Oogenesis in the marine mussel Mytilus edulis: an ultrastructural study. Marine Biology, 95, 405414.CrossRefGoogle Scholar
Purchon, R.D 1971. Digestion in filter feeding bivalves - a new concept. Proceedings oftheMalacological Society of London, 39, 253262.Google Scholar
Purchon, R.D 1977. The Biology of the Mollusca. 2nd ed. Oxford: Pergamon Press.Google Scholar
Reid, R.G.B 1966. Digestive tract enzymes in the bivalves Lima Mans Gmelin and Mya arenaria L. Comparative Biochemistry and Physiology, 17, 417433.Google Scholar
Sastry, A.N & Blake, N.J 1971. Regulation of gonad development in the bay scallop Aequipecten irradians Lamarck. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 140, 274283.Google Scholar
Shear, M & Pearse, A.G.E 1963. A starch substrate film method for the histochemical localization of amylase. Experimental Cell Research, 32, 174177.CrossRefGoogle ScholarPubMed
Taylor, A.C & Venn, T.J 1979. Seasonal variation in weight and biochemical composition of the tissues of the queen scallop, Chlamys opercularis, from the Clyde sea area. journal of the Marine Biological Association of the United Kingdom, 59, 605621.CrossRefGoogle Scholar
Vassallo, M.T 1973. Lipid storage and transfer in the scallop Chlamys hericia Gould. Comparative Biochemistry and Physiology, 44A, 11691175.Google Scholar
Walne, P.R 1970. The seasonal variation of meat and glycogen content of seven populations of oysters Ostrea edulis L. and a review of the literature. Fishery Investigations. Ministry of Agriculture, Fisheries and Food (ser. 2), 26(3), 35 pp.Google Scholar
Zaba, B.M 1981. Glycogenolytic pathways in the mantle tissue of Mytilus edulis L. Marine Biology Letters, 2, 6774.Google Scholar
Zacks, S.I 1955. The cytochemistry of the amoebocytes and intestinal epithelium of Venus mercenaria (Lamellibranchiata), with remarks on a pigment resembling ceroid. Quarterly Journal of Microscopical Science, 96, 5771.Google Scholar