Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-07T05:20:26.523Z Has data issue: false hasContentIssue false

A Summary of the Work on the Amphipod Gammarus Cheureuxi Sexton Carried out at the Plymouth Laboratory (1912–1936)

Published online by Cambridge University Press:  11 May 2009

Extract

The work began in June, 1912, simply as a study of the life-history of some of our common amphipods. The genus Gammarus was chosen, because of the number and the wide distribution of its species in the neighbourhood. Seven of these species, all black-eyed, from marine, estuarine, brackish and fresh waters, were kept in the laboratory for investigation until the first red-eyed specimens were discovered in one of the brackish species, later described as Gammarus chevreuxi (see p. 360). Since the manner in which these red-eyed individuals occurred raised points of considerable interest, it was decided to confine investigation to G. chevreuxi, and a series of experiments was started. The different variations involving both the structure and the pigmentation of the body and of the eyes appeared from time to time, some behaving as simple mendelian characters and attributable to the presence of a single recessive gene, others with a more problematical hereditary basis. These variations have been recorded as they occurred (see bibliography). For ten years, no second mutation appeared, although frequent dredgings were made and the animals thus obtained were kept for several generations in laboratory conditions. Because of this apparent stability of character the wild Gammarus was regarded as a homogeneous population until, in 1922, it became increasingly evident that the results showing in the laboratory cultures could only be explained on the supposition that many recessive factors must be present in the natural conditions.

The evidence steadily accumulated, but direct proof was very difficult to obtain partly because (as we found in our experience with the cultures) the recessive types are often less viable than the normal, and therefore probably less able to withstand the competition in the wild, and partly perhaps because we had no criteria by which to assess the influence of the laboratory conditions (changes of temperature, food, salinity, pressure, etc.) on the constitution of the Gammarus, and so could not decide whether a variation was caused by the inherent action of the recessive genes, or by the untoward environment producing a change in the action of the normal genes.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1936

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. 1913. Sexton, E. W.Description of a New Species of Brackishwater Gammarus (G. chevreuxi, n. sp.). Journ. Mar. Biol. Assoc., N.S., Vol. IX, No. 4, 1913, pp. 542545.CrossRefGoogle Scholar
2. 1913. Sexton, E. W., and Annie, Matthews.Notes on the Life History of Gammarus chevreuxi. Journ. Mar. Biol. Assoc., N.S., Vol. IX, No. 4, 1913, pp. 546556.CrossRefGoogle Scholar
3. 1916. Sexton, E. W., and Wing, M. B.Experiments on the Mendelian Inheritance of Eye-colour in the Amphipod Gammarus chevreuxi. Journ. Mar. Biol. Assoc., N.S., Vol. XI, No. 1, 1916, pp. 1850.CrossRefGoogle Scholar
4. 1917. Allen, E. J., and Sexton, E. W.The loss of the Eye-pigment in Gammarus chevreuxi. Journ. Mar. Biol. Assoc., N.S., Vol. XI, No. 3, 1917, pp. 273353.CrossRefGoogle Scholar
5. 1917. Allen, E. J.Heredity in Plants, Animals and Man. Journ. Mar. Biol. Assoc., N.S., Vol. XI, No. 3, pp. 354379.CrossRefGoogle Scholar
6. 1920. Allen, E. J., and Sexton, E. W.Eye-colour in Gammarus Journ. Genetics., Vol. 9, No. 4, 1920, pp. 347–366.Google Scholar
7. 1921. Sexton, E. W., and Huxley, Julian S. Intersexes in Gammarus chevreuxi and Related Forms. Journ. Mar. Biol. Assoc., N.S., Vol. XII, No. 3, 1931, pp. 506556.CrossRefGoogle Scholar
8. 1921. Huxely, J. S.Linkage in Gammarus chevreuxi. Journ. Genetics, Vol. 11, No. 3, 1921, pp. 229233.CrossRefGoogle Scholar
9. 1923. MacBride, E. W.The Present Position of the Darwinian Theory. Science Progress, Vol. 18, pp. 7696.Google Scholar
10. 1923. Huxley, J. S.Further Data on Linkage in Gammarus chevreuxi and its Relation to Cytology. Brit. Journ. Exp. Biol., Vol. 1, 1923, pp. 7996.CrossRefGoogle Scholar
11. 1924. Huxley, J. S.Practical Biology. School Science Review, Vol. 21, 1924, pp. 1618.Google Scholar
12. 1924. Sexton, E. W.The Moulting and Growth-Stages of Gammarus with descriptions of the Normals and Intersexes of G. chevreuxi. Journ. Mar. Biol. Assoc., N.S., Vol. XIII, No. 2, 1924, pp. 340401.CrossRefGoogle Scholar
13. 1925. Chevreux, Ed. et Louis, Fage. Faune de France. 9. Amphipodes, pp. 255256. Paris, 1925.Google Scholar
14. 1925. Palmer, Richard. The Chromosome Complex of Gammarus chevreuxi Sexton. Nature, Vol. 116, p. 785, Nov. 28,1925.CrossRefGoogle Scholar
15. 1925. Huxley, J. S., and Ford, E. B.Mendelian Genes and Rates of Development. Nature, Vol. 116 (No. 2928), pp. 861863, Dec. 12, 1925.CrossRefGoogle Scholar
16. 1926. Sexton, E. W., and Clark, A. R.New Mutations in Gammarus chevreuxi Sexton. Nature, Vol. 117 (No. 2936), pp. 194195, Feb. 6, 1926.CrossRefGoogle Scholar
17. 1926. Palmer, Richard.The Chromosome Complex of Gammarus chevreuxi Sexton. I. Spermatogenesis. Quart. Journ. Micro. Sci., Vol. 70, Pt. 3, pp. 541551.Google Scholar
18. 1927. Barnard, K. H. A Study of the Freshwater Isopodan and Amphipodan Crustacea of South Africa. Trans. Roy. Soc. S. Africa, Vol. 14, Pt. 2, pp. 139215.Google Scholar
19. 1927. Sexton, E. W., and Pantin, C. F. A.Inheritance in Gammarus chevreuxi Sexton. Nature, Vol. 119, pp. 119120. Jan. 22, 1927.CrossRefGoogle Scholar
20. 1927. Ford, E.B., and Hwxley, J. S.Mendelian Genes and Rates of Development in Gammarus chevreuxi. Brit. Journ. Exp. Biol., Vol. 5, No. 2, pp. 112134 (Dec, 1927).CrossRefGoogle Scholar
21. 1928. Sexton, E. W.On the Rearing and Breeding of Gammarus in Laboratory Conditions. Journ. Mar. Biol. Assoc., N.S., Vol. XV, No. 1, pp. 3355, Feb., 1928.CrossRefGoogle Scholar
22. 1928. Kunkel, B. W., and Robertson, J. A.Contributions to the Study of Relative Growth in Gammarus chevreuxi. Journ. Mar. Biol. Assoc., N.S., Vol. XV, No. 2, pp. 655681.CrossRefGoogle Scholar
23. 1928. Ford, E. B.Inheritance of Dwarfing in Gammarus chevreuxi. Journ. Genetics, Vol. 20, No. 1, pp. 93102.CrossRefGoogle Scholar
24. 1928. Huxley, J. S.Sexual difference of Linkage in Gammarus chevreuxi. Journ. Genet., Vol. 20, No. 2, pp. 145156.CrossRefGoogle Scholar
25. 1929. Ford, E. B.The Physiology of Genetics. Eugenics Review, Vol. 21, pp. 114116, 1929.Google Scholar
26. 1929. Ford, E. B., and Huxley, J. S. Genetic Rate-factors in Gammarus. Wilhelm Roux' Arch. f. Entwickl. Org., Vol. 117, No. 2, pp. 6779, Berlin.Google Scholar
27. 1930. Bělehrádek, J., and Huxley, J. S.The rate of eye-growth and its variation in Gammarus chevreuxi. Journ. Exp. Biol., Vol. 7, pp. 3740.CrossRefGoogle Scholar
28. 1930. Sexton, E. W., Clark, A. R. and Spooner, G. M.Some New Eye-Colour Changes in Gammarus chevreuxi Sexton. Part I. Journ. Mar. Biol. Assoc., N.S., Vol. XVII, No. 1, pp. 189218.CrossRefGoogle Scholar
29. 1931. Penteloav, F. T. K.A New Locality for Gammarus chevreuxi, Sexton. Nature, Vol. 128, p. 797.Google Scholar
30. 1932. Huxley, Julian S., and Wolsky, A.Structure of Normal and Mutant Eyes in Gammarus chevreuxi. Nature, Vol. 129, pp. 242243, Feb. 13, 1932.CrossRefGoogle Scholar
31. 1932. Sexton, E. W., Clark, A. R., and Spooner, G. M.Some New Eye-Colour Changes in Gammarus chevreuxi Sexton. Part II. Journ. Mar. Biol. Assoc., N.S., Vol. XVIII, No. 1, pp. 307336, May, 1932.CrossRefGoogle Scholar
32. 1932. Spooner, G. M.An Experiment in Breeding Wild Pairs of Gammarus chevreuxi at a High Temperature, with an account of Two New Recessive Types of Red Eye. Journ. Mar. Biol. Assoc., N.S., Vol. XVIII, No. 1, pp. 337353.CrossRefGoogle Scholar
33. 1932. Sexton, E. W.Degeneration and Loss of the Eye in the Amphipod Gammarus chevreuxi Sexton. Part I. Journ. Mar. Biol. Assoc., N.S., Vol. XVIII, No. 1, pp. 355393.CrossRefGoogle Scholar
34. 1932. Huxley, Julian S.Problems of Relative Growth. London, pp. 34, 40, 228–241.Google Scholar
35. 1932. Wolsky, A., and Huxley, J. S.The Reactions of the Normal and Mutant Types of Gammarus chevreuxi to Light. Journ. Exp. Biol., Vol. 9, No. 4, pp. 427440, Oct., 1932.CrossRefGoogle Scholar
36. 1932. Cunningham, J. T.Degenerative Mutations. Nature, Vol. 130, pp. 203204.Google Scholar
37. 1933. Le Roux, M. L.Recherches sur la Sexualité des Gammariens. Bull. Biol. de France et de Belgique, Suppl. XVI, pp. 1138.Google Scholar
38. 1933. Sexton, E. W., and Clark, A. R.Further Mutations in the Amphipod Gammarus chevreuxi Sexton. Nature, Vol. 131, pp. 201202.CrossRefGoogle Scholar
39. 1934. Sexton, E. W., and Clark, A. R.New Developments in Gammarus chevreuxi Sexton. Nature, Vol. 133, p. 27, Jan. 6, 1934.CrossRefGoogle Scholar
40. 1934. Huxley, Julian S., and De Beer, G. R.The Elements of Experimental Embryology. Cambridge, pp. 409413.Google Scholar
41. 1934. Wolsky, A. Phylogenetische und Mutative Degeneration des Gammaridenauges. Math. Naturwiss. Anz. der Ungarischen Akad. Wiss., Vol. 51, pp. 645–670, Budapest, 1934.Google Scholar
42. 1934. Wolsky, A., and Huxley, J. S.The Structure and Development of Normal and Mutant Eyes in Gammarus chevreuxi. Proc. Roy. Soc. B., Vol. 114, pp. 364392.Google Scholar
43. 1935. Yarnold, K. W.A Further Reappearance of the Second Red-Eye Mutation in Gammarus. Nature, Vol. 135, p. 832, May 18, 1935.CrossRefGoogle Scholar
44. 1935. Lowenstein, Otto.The Respiratory Rate of Gammarus chevreuxi in Relation to Differences in Salinity. Journ. Exp. Biol., Vol. 12, No. 3, pp. 217221. July, 1935.CrossRefGoogle Scholar
45. 1935. Sexton, E. W.Fertilisation of Successive Broods of Gammarus chevreuxi. Nature, Vol. 136, p. 477, Sept. 21, 1935.CrossRefGoogle Scholar
46. 1935. Yarnold, K. W.Persistence of Sperms to a Later Mating in Gammarus. Nature, Vol. 136, pp. 758759.CrossRefGoogle Scholar
47. 1935. Sexton, E. W., Clark, A. R., and Spooner, G. M.First Appearance of Red-eye in the wild Gammarus chevreuxi Sexton. Nature, Vol. 136, p. 836. Nov. 23, 1935.CrossRefGoogle Scholar
48. 1936. Sexton, E. W., and Clark, A. R.Variations in the White Pigment of the Eye in Gammarus chevreuxi Sexton, with a Description of a New Genetic Type, the “Clotted eye.” Journ. Mar. Biol. Assoc., N.S., Vol. XX, No. 3, pp. 691699.Google Scholar
49. 1936. Wolsky, Alexander.Ueber einen blinden Höhlengammaride, Niphargus aggtelekiensis Dudich, mit Bemerkungen über die Rückbildung des Gammaridenauges. Verhandlungen der Internationalen Vereinigung für theoretische und angewandte Limnologie. Vol. 7, 1935, pp. 449463.Google Scholar
50. 1936. Gallien, , Louis, , et David, , Anomalies, Mdlle. R., Régression et Perte de l'Œil chez Talitrus saltalor Montagu Bull. Biol. France et Belgique, Vol. 70, No. 2, pp. 184196Google Scholar
51. 1936. David, Renee.Recherches sur la biologie et l'sintersexualité de Talitrus saltator Mont. Bull. Biol. France et Belgique, Vol. 70, No. 3, pp. 332357.Google Scholar
52. 19351936. Wolsky, A. Über Zusammenhänge zwischen Entwicklungsphysiologie und Genetik der experimentellen Morphologie (Erörtert am Problem des Crustaceenauges) Arbeiten d. Ungarischen Biologischen Forschungs Institutes, Vol. VIII, pp. 186195, Tihany.Google Scholar
53. 1936. Wolsky, A., and Huxley, J. S. The Structure of the Non-Faceted Region in the Bar-Eye Mutants of Drosophila, and its bearing on the Analysis of Genie Action upon Arthropodan Eyes. Proc. Zool. Soc, Part 2, 1936, pp. 485489.Google Scholar
54. 1936. Sexton, E. W. and Clark, A. R.Heterozygotes in a Wild Population of Gammarus chevreuxi Sexton. Journ. Mar. Biol. Assoc., N.S., Vol. XXI, No. 1, pp. 319356.CrossRefGoogle Scholar