Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-03T13:00:45.328Z Has data issue: false hasContentIssue false

A study of the morphology, fine structure and histochemistry of the foot of the pediveliger of Mytilus edulis L.

Published online by Cambridge University Press:  11 May 2009

D. J. W. Lane
Affiliation:
N.E.R.C. Unit of Marine Invertebrate Biology, Marine Science Laboratories, Menai Bridge, Anglesey, North Wales, U.K.
J. A. Nott
Affiliation:
N.E.R.C. Unit of Marine Invertebrate Biology, Marine Science Laboratories, Menai Bridge, Anglesey, North Wales, U.K.

Extract

The development of the planktonic veliger larva of Mytilus edulis L. culminates in a swimming crawling stage during which the foot is of considerable importance in the selection of a settlement site. This stage has been described for many other bivalves (see Bayne, 1965) and has been given the term ‘pediveliger’ by Carriker (1961). The pediveliger of Mytilus edulis is negatively phototactic and positively geotactic during velar swimming (Bayne, 1964b) and is usually confined to water layers close to the substratum. The foot may be protruded during swimming and if it comes into contact with the substratum it adheres and a period of crawling commences. During crawling the larva progresses on the ventral or posterior surface of the foot by means of ciliary and muscular action. Crawling may result in attachment by secretion of the first byssus thread or alternatively the foot is withdrawn and velar swimming is continued until the next exploratory crawling phase. Mytilus larvae attach most readily to filamentous substrates in the field (Blok & Geelen, 1958; Bayne, 1964a).

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, C. W. M., 1957. A p-dimethylaminobenzaldehyde-nitrite method for the histochemical demonstration of tryptophane and related compounds. Journal of Clinical Pathology, 10, 5662.CrossRefGoogle ScholarPubMed
Ansell, A. D., 1962. The functional morphology of the larva, and the post-larval development of Venus striatula (da Costa). Journal of the Marine Biological Association of the United Kingdom, 42, 419–43.CrossRefGoogle Scholar
Barrett, A. J., 1971. The biochemistry and function of mucosubstances. Histochemical Journal, 3, 213–21.CrossRefGoogle ScholarPubMed
Barrnett, R. J. & Seligman, A. M., 1952. Demonstration of protein bound sulphydryl and disulphide groups by two new histochemical methods. Journal of the National Cancer Institute, 94, 176–83.Google Scholar
Bayne, B. L., 1964 a. Primary and secondary settlement in Mytilus edulis L. (Mollusca). Journal of Animal Ecology, 33, 513–23.CrossRefGoogle Scholar
Bayne, B. L., 1964 b. The responses of the larvae of Mytilus edulis L. to light and to gravity. Oikos, 15, 162–74.Google Scholar
Bayne, B. L., 1965. Growth and the delay of metamorphosis of the larvae of Mytilus edulis (L.). Ophelia, 2, 147.CrossRefGoogle Scholar
Bayne, B. L., 1971. Some morphological changes that occur at the metamorphosis of the larvae of Mytilus edulis. In:Fourth European Marine Biology Symposium, ed. Crisp, D. J., 259–80. Cambridge University Press.Google Scholar
Blok, J. W. De & Geelen, H. J. F. M., 1958. The substratum required for the settling of mussels (Mytilus edulis L.). Archives ne'erlandaises de zoologie, 13, 446–60.Google Scholar
Braden, A. W. H., 1955. The reactions of isolated mucopolysaccharides to several histochemical tests. Stain Technology, 30, 1926.CrossRefGoogle ScholarPubMed
Burstone, M. S., 1955. An evaluation of histochemical methods for protein groups. Journal of Histochemistry and Cytochemistry, 3, 3249.CrossRefGoogle ScholarPubMed
Carriker, M. R., 1961. Interrelation of functional morphology, behaviour and autecology in early stages of the bivalve Mercenaria mercenaria. Journal of the Elisha Mitchell Scientific Society, 77, 168241.Google Scholar
Casley-Smith, J. R., 1962. The identification of chylomicra and lipoproteins in tissue sections and their passage into jejunal lacteals. Journal of Cell Biology, 15, 259–77.CrossRefGoogle ScholarPubMed
Casselman, W. G. B., 1962. Histochemical technique. 205 pp. London: Methuen and Co. Ltd.Google Scholar
Cejkova, J. & Brettschneider, I., 1970. Glutaraldehyde fixation of corneal acid mucopolysaccharides. Opthalmic Research, 1, 149–55.CrossRefGoogle Scholar
Cranfield, H. J., 1973a. A study of the morphology, ultrastructure, and histochemistry of the foot of the pediveliger of Ostrea edulis. Marine Biology, 22, 187202.CrossRefGoogle Scholar
Cranfield, H. J., 1973b. Observations on the behaviour of the pediveliger of Ostrea edulis during attachment and cementing. Marine Biology, 22, 203–9.CrossRefGoogle Scholar
Cranfield, H. J., 1973c. Observations on the function of the glands of the foot of the pediveliger of Ostrea edulis during settlement. Marine Biology, 22, 211–23.CrossRefGoogle Scholar
Dorsett, D. A. & Hyde, R., 1970. The spiral glands of Nereis. Zeitschrift fur Zellforschung und mikroskopisch Anatomie, 110, 204–18.CrossRefGoogle ScholarPubMed
Drew, G. A., 1897. Notes on the embryology, anatomy, and habits of Yoldia limatula, Say. Johns Hopkins University Circulars, 132, 1114.Google Scholar
Glenner, G. G. & Lillie, R. D., 1959. Observations on the diazotization-coupling reaction for the histochemical demonstration of tyrosine: metal chelation and formazan variants. Journal of Histochemistry and Cytochemistry, 7, 416–22.CrossRefGoogle ScholarPubMed
Grillo, T. A. I., Ogunnaike, P. O. & Faoye, S., 1971. Effects of histological and electron microscopical fixatives on the insulin content of the rat pancreas. Journal of Endocrinology, 51, 645–9.CrossRefGoogle ScholarPubMed
Gruffydd, Li. D., Lane, D. J. W. & Beaumont, A. R., 1975. The glands of the larval foot in Pecten maximus L. and possible homologues in other bivalves. Journal of the Marine Biological Association of the United Kingdom, 55, 463–76.CrossRefGoogle Scholar
Hooghwinkel, G. J. M. & Smits, G., 1957. The specificity of the periodic acid-Schiff technique studied by a quantitative test-tube method. Journal of Histochemistry and Cytochemistry, 5, 120–6.CrossRefGoogle ScholarPubMed
Hopwood, D., 1967. Some aspects of fixation with glutaraldehyde; a biochemical and histo-chemical comparison of the effects of formaldehyde and glutaraldehyde fixation on various enzymes and glycogen, with a note on the penetration of glutaraldehyde into liver. Journal of Anatomy, 101, 8392.Google Scholar
Hopwood, D., 1969. A comparison of the crosslinking abilities of glutaraldehyde, formaldehyde and a-hydroxyadipaldehyde with bovine serum albumin and casein. Histochemie, 17, 151–61.CrossRefGoogle ScholarPubMed
Hopwood, D., 1973. Theoretical and practical aspects of glutaraldehyde fixation. In:Fixation in histochemistry, ed. Stoward, P. J., 4783. London: Chapman and Hall.CrossRefGoogle Scholar
Hunt, S., 1970. Polysaccharide-protein complexes in invertebrates. 329 pp. London: Academic Press.Google Scholar
Laskey, A. M., 1950. A modification of Mayer's mucihaematein technic. Stain Technology, 25, 33–4.CrossRefGoogle ScholarPubMed
Leblond, C. P., Glegg, R. E. & Eidinger, D., 1957. Presence of carbohydrates with free 1,2-glycol groups in sites stained by the periodic acid-Schiff technique. Journal of Histochemistry and Cytochemistry, 5, 445–58.CrossRefGoogle ScholarPubMed
Maas, Geesteranus R. A., 1942. On the formation of banks by Mytilus edulis L. Archives neerlandaises de zoologie, 6, 283326.CrossRefGoogle Scholar
Pearse, A. G. E., 1960. Histochemistry, theoretical and applied, 2nd ed. 998 pp. London: Churchill.Google Scholar
Pearse, A. G. E., 1968. Histochemistry, theoretical and applied, vol. I, 3rd ed. 759 pp. London: Churchill.Google Scholar
Pedersen, K. J., 1963. Slime-secreting cells of planarians. Annals of the New York Academy of Sciences, 106, 424–43.Google Scholar
Pikkarainen, J., Rantanen, J., Vastamaki, M., Lampiaho, K., Kari, A. & Kulonen, E., 1968. On collagens of invertebrates with special reference to Mytilus edulis. European Journal of Biochemistry, 4, 555–60.CrossRefGoogle ScholarPubMed
Prytherch, H. F., 1934. The role of copper in the setting, metamorphosis, and distribution of the American oyster, Ostrea virginica. Ecological Monographs, 4, 47107.CrossRefGoogle Scholar
Pujol, J. P., 1967. Le complex byssogene des mollusques bivalves. Histochimie comparee des secretions chez Mytilus edulis L. et Pinna nobilis L. Bulletin de la Socie'te line'enne de Normandie, 8, 308–33.Google Scholar
Pujol, J. P., 1970. The collagen of the byssus in Mytilus edulis L. II. Autoradiographic study on the incorporation of3H proline. Zeitschrift fur Zellforschung und mikroskopische Anatomie, 104, 358–74.Google Scholar
Pujol, J. P., Houvenaghel, G. & Bouillon, J., 1972. Le collagene du byssus de Mytilus edulis L. I. Ultrastructure des cellules secretrices. Archives de zoologie expe'rimentale et generate, 113, 251–64.Google Scholar
Pujol, J. P., Rolland, M., Lasry, S. & Vinet, S., 1970. Comparative study of the amino acid composition of the byssus in some common bivalve molluscs. Comparative Biochemistry and Physiology, 34, 193201.CrossRefGoogle Scholar
Quayle, D. B., 1952. Structure and biology of the larva and spat of Venerupis pullastra (Montagu). Transactions of the Royal Society of Edinburgh, 62, 255–97.CrossRefGoogle Scholar
Quintarelli, G. & Dellovo, M. C, 1965. The chemical and histochemical properties of alcian blue. IV. Further studies on the methods for the identification of acid glycosaminoglycans. Histochemie, 5, 196209.CrossRefGoogle ScholarPubMed
Reynolds, E. S., 1963. The use of lead citrate at high pH as an electron opaque stain in electron microscopy. Journal of Cell Biology, 17, 208–12.Google Scholar
Scott, J. E. & Dorling, J., 1965. Differential staining of acid glycosaminoglycans (mucopolysaccharides) by Alcian blue in salt solutions. Histochemie, 5, 221–33.CrossRefGoogle ScholarPubMed
Seed, R., 1969. The ecology of Mytilus edulis L. (Lamellibranchiata) on exposed rocky shores. I. Breeding and settlement. Oecologia, 3, 277316.CrossRefGoogle ScholarPubMed
Spicer, S. S., 1965. Diamine methods for differentiating mucosubstances histochemically. Journal of Histochemistry and Cytochemistry, 13, 211–34.CrossRefGoogle Scholar
Tamarin, A. & Keller, P. J., 1972. An ultrastructural study of the byssal thread forming system in Mytilus californianus. Journal of Ultrastructure Research, 40, 401–16.Google Scholar
Taylor, R. L., 1967. A fibrous banded structure in a crop lesion of the cockroach, Leucophaea maderae. Journal of Ultrastructure Research, 19, 130–41.Google Scholar
Tranzer, J. P. & Pearse, A. G. E., 1964. Titanous chloride as a reducing agent in the dinitrofiuorobenzene reaction for protein. Journal of Histochemistry and Cytochemistry, 12, 325–6.CrossRefGoogle ScholarPubMed
Whur, P., Hersovics, A. & Leblond, C. P., 1969. Radioautographic visualization of the incorporation of galactose-3H and mannose-3H by rat thyroids in vitro in relation to the stages of thyroglobulin synthesis. Journal of Cell Biology, 43, 289311.CrossRefGoogle Scholar