Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-03T13:20:44.409Z Has data issue: false hasContentIssue false

Study of the fatty acid composition of Artemia salina cysts from Tunisia

Published online by Cambridge University Press:  02 July 2013

Hachem Ben Naceur*
Affiliation:
Ecosystèmes et Ressources Aquatiques/INAT/Université de Carthage, 43 Avenue Charles Nicolle 1082 Tunis, Tunisia
Nabila Ghazali
Affiliation:
Physiologie et Ecophysiologie des Organismes Aquatiques/FST/UniversitéEl Manar, Campus Universitaire 1060 Tunis, Tunisia
Amel Ben Rejeb Jenhani
Affiliation:
Ecosystèmes et Ressources Aquatiques/INAT/Université de Carthage, 43 Avenue Charles Nicolle 1082 Tunis, Tunisia
Mohamed Salah Romdhane
Affiliation:
Ecosystèmes et Ressources Aquatiques/INAT/Université de Carthage, 43 Avenue Charles Nicolle 1082 Tunis, Tunisia
*
Correspondence should be addressed to: H. Ben Naceur, Research Unit of Ecosystems and Aquatic Resources, University of Carthage, National Institute of Agricultural Sciences of Tunisia, 43 Avenue Charles Nicolle 1082 Tunis, Mahrajéne, Tunisia email: [email protected].

Abstract

In the present study, decapsulated cysts from eleven Tunisian Artemia salina populations were analysed for their fatty acid profile. Results showed that palmitic (16:0), palmitoleic (16:1n-7), stearic (18:0), cis-vaccenic (18:1n-7), oleic (18:1n-9), linoleic (18:2n-6), linolenic (18:3n-3) and eicosapentaenoic (20:5n-3) were the major fatty acids. The ratio of C16:0/C16:1 fatty acids fluctuated between 0.8 and 3.8. Docosahexaenoic acid (22:6n-3) was absent or found in trace (<0.2%) and arachidonic acids (20:4n-6) was found in higher quantity in all marine-type cysts than in freshwater-type cysts samples. Furthermore, based on the fatty acid profile of the studied Artemia salina populations, we can concluded that Sijoumi, Sahline, Bekalta, Mcheguig and El Adhibet strains could be ascribed to marine-type Artemia, whereas the population from Moknine, Sidi El Hani, Sfax, El Melah, Zarzis and Mhabeul could be categorized as freshwater-type. Principal components analysis showed that palmitoleic acid, linolenic acid, eicosapentaenoic acid, arachidonic acid and C16:0/C16:1 ratio are the most important fatty acids variable between cysts samples, with a total contribution of 68.73% relatively to the first component, whereas, for the second component, palmitic acid, cis-vaccenic acid and oleic acid, are the most important variables, with a total contribution of 56.25%. Moreover, palmitoleic acid, linolenic acid, eicosapentaenoic acid, arachidonic acid and C16:0/C16:1 ratio are the most important fatty acids which contribute to the discrimination between freshwater and marine-type Artemia; while palmitic acid, cis-vaccenic acid and oleic acids represent the major fatty acids permitting differentiation between strains from the same Artemia type, especially for freshwater-type Artemia.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abatzopoulos, T.J., Beardmore, J.A., Clegg, J.S. and Sorgeloos, P. (2002) Artemia: basic and applied biology. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
Abatzopoulos, T.J., Baxevanis, A.D., Triantaphyllidis, G.V., Criel, G., Pador, E.L., Van Stappen, G. and Sorgeloos, P. (2006) International study on Artemia LXIX. Quality evaluation of Artemia urmiana Günther (Urmia Lake, Iran) with special emphasis on its particular cyst characteristics. Aquaculture 254, 442454.CrossRefGoogle Scholar
Ben Naceur, H., Ben Rejeb Jenhani, A. and Romdhane, M.S. (2008) Valorisation de l'Artemia (Crustacea; Branchiopoda) de la saline de Sahline (Sahel Tunisien). Bulletin de la Société Zoologique de France 133, 181188.Google Scholar
Ben Naceur, H., Ben Rejeb Jenhani, A. and Romdhane, M.S. (2009) New distribution record of the brine shrimp Artemia (Crustacea, Branchiopoda, Anostraca) in Tunisia. Check List 5, 281288.CrossRefGoogle Scholar
Ben Naceur, H., Ben Rejeb Jenhani, A. and Romdhane, M.S. (2010) Variability of Artemia salina cysts from Sabkhet El Adhibet (Southeast Tunisia) with special regard to their use in aquaculture. Inland Water Biology 3, 7078.CrossRefGoogle Scholar
Ben Naceur, H., Ben Rejeb Jenhani, A. and Romdhane, M.S. (2012a) Review of the biogeography of Artemia in Tunisia. International Journal of Artemia Biology 2, 2439.Google Scholar
Ben Naceur, H., Ben Rejeb Jenhani, A. and Romdhane, M.S. (2012b) Quality characterization of cysts of the brine shrimp Artemia population from Tunisia focusing on its potential use in aquaculture. Journal of Biological Research—Thessaloniki 17, 1625.Google Scholar
Bengtson, D., Léger, P. and Sorgeloos, P. (1991) Use of Artemia as food source. In Browne, R., Sorgeloos, P. and Trotman, C.N.A. (eds) Artemia biology. Boca Raton, FL: CRC Press, pp. 255285.Google Scholar
Camargo, W.N., Duran, G.C., Rada, O.C., Hernandez, L.C., Linero, J.-C.G., Muelle, M.I. and Sorgeloos, P. (2005) Determination of biological and physicochemical parameters of Artemia franciscana strain in hypersaline environments for aquaculture in the Colombian Caribbean. Saline Systems 1, 1–9. doi:10.1186/1746-1448-1-9.CrossRefGoogle ScholarPubMed
Castell, J.D., Bell, J.G., Tocher, D.R. and Sargent, J.R. (1994) Effect of purified diets containing different combinations of arachidonic and docosahexaenoic acid on survival, growth, and fatty acid composition of juvenile turbot (Scophthalmus maximus). Aquaculture 128, 315333.CrossRefGoogle Scholar
Curé, K., Gajardo, G. and Coutteau, P. (1996) The effect of DHA/EPA ratio in live feed on the fatty acid composition, survival, growth and pigmentation of Turbo larvae Scophthalmus maximus L. In Gajardo, G. and Coutteau, P. (eds) Proceedings of a workshop on fish and mollusc larviculture. Santiago: Impresora Creses, pp. 5767.Google Scholar
Dannevig, A. and Hansen, S. (1952) Factors involved in hatching and rearing fish eggs and larvae. Fishkeridirektoratets Skrifter Serie Havundersokelser 10, 536.Google Scholar
Estevez, A., McEvoy, L.A., Bell, J.G. and Sargent, J.R. (1999) Growth, survival, lipid composition and pigmentation of turbot (Scophthalmus maximus) larvae fed live-prey enriched in arachidonic and eicosapentaenoic acids. Aquaculture 180, 321343.CrossRefGoogle Scholar
Evans, R.P., Zhu, P., Parrish, C.C. and Brown, J.A. (2000) Lipid and amino acid metabolism during early development of marine fish. In Shahidi, F. (ed.) Seafood in health and nutrition—Transformation in fisheries and aquaculture: global perspectives. St John's: Science Tech Publishing Company, pp. 477493.Google Scholar
Gajardo, G.M. and Beardmore, J.A. (2012) The brine shrimp Artemia: adapted to critical life conditions. Frontiers in Physiology 3, Article N°185, 1–8. doi: 10.3389/fphys.2012.00185CrossRefGoogle ScholarPubMed
Kara, M.H., Bengraine, K.A., Derbal, F., Chaoui, L. and Amarouayache, M. (2004) Quality evaluation of a new Artemia from chott Marouane (Northeast Algeria). Aquaculture 235, 361369.CrossRefGoogle Scholar
Kinne, O. (1977) Cultivation of animals. In Kinne, O. (ed.) Marine ecology, Volume III. Cultivation, Part 2. London: John Wiley, pp. 5791293.Google Scholar
Koven, W., Barr, Y., Lutzky, S., Ben-Atia, I., Harel, M., Behrens, P., Weiss, R. and Tandler, A. (2000) The effect of dietary arachidonic acid (20:4n-6) on growth and survival prior to and following handling stress in the larvae of gilthead seabream (Sparus aurata). Abstracts of contributions presented at the International Conference Aqua 2000. European Aquaculture Society, Special Publication No. 28. Ostende: European Aquaculture Society.Google Scholar
Lavens, P., Léger, P. and Sorgeloos, P. (1989) Manipulation of the fatty acid profile in Artemia offspring produced in intensive culture systems. In De Pauw, N., Jaspers, E., Ackefors, H. and Wilkins, N. (eds) Aquaculture—a biotechnology in progress. Bredene: European Aquaculture Society, pp. 731739.Google Scholar
Léger, C., Gatesoupe, F.J., Metailler, R., Luquet, P. and Fremont, L. (1979) Effect of dietary fatty acids by chain lengths and w series on the growth and lipid composition of turbot Scophthalmus maximus L. Comparative Biochemistry and Physiology 64, 345350.Google Scholar
Léger, P., Bengtson, D.A., Simpson, K.L. and Sorgeloos, P. (1986) The use and nutritional value of Artemia as a food source. Oceanography and Marine Biology: an Annual Review 24, 521623.Google Scholar
Lim, L.C., Soh, A., Dhert, P. and Sorgeloos, P. (2001) Production and application of on-grown Artemia in freshwater ornamental fish farm. Aquaculture Economics and Management 5, 211228.CrossRefGoogle Scholar
McEvoy, L.A., Naess, T., Bell, J.G. and Lie, T. (1998) Lipid and fatty acid composition of normal and malpigmented Atlantic halibut (Hippoglossus hippoglossus) fed enriched Artemia: a comparison with fry fed wild copepods. Aquaculture 163, 237250.CrossRefGoogle Scholar
Merchie, G. (1996) Use of nauplii and meta-nauplii. In Lavens, P. and Sorgeloos, P. (eds) Manual on the production and use of live food for aquaculture. Rome: FAO, Fisheries Technical Paper 361, pp. 137163.Google Scholar
Morris, R.W. (1956) Some aspects of the problem of rearing marine fishes. Bulletin de l'Institut Océanographique Monaco 1082, 1161.Google Scholar
Mourente, G., Rodriguez, A., Tocher, D.R. and Sargent, J.R. (1993) Effects of dietary docosahexaenoic acid (DHA; 22-6n3) on lipid and fatty acid compositions and growth in gilthead seabream (Sparus aurata L.) larvae during first feeding. Aquaculture 112, 7998.CrossRefGoogle Scholar
Navarro, J.C. and Amat, F. (1992) Effect of algal diets on the fatty acid composition of brine shrimp, Artemia sp. cysts. Aquaculture 101, 223227.CrossRefGoogle Scholar
Navarro, J.C., Amat, F. and Sargent, J.R. (1992a) Fatty acid composition of coastal and inland Artemia sp. populations from Spain. Aquaculture 102, 219230.CrossRefGoogle Scholar
Navarro, J.C., Amat, F. and Sargent, J.R. (1992b) Lipid composition of cysts of the brine shrimp Artemia sp. from Spanish populations. Journal of Experimental Marine Biology and Ecology 155, 123131.CrossRefGoogle Scholar
Navarro, J.C., Amat, F. and Sargent, J.R. (1993) The lipids of the cysts of freshwater-and marine-type Artemia. Aquaculture 109, 327336.CrossRefGoogle Scholar
Rollefsen, G. (1939) Artificial rearing of fry of seawater fish. Preliminary communication. Rapports et Procès-verbaux des Réunions / Conseil Permanent International pour l'Exploration de la Mer 30, 204221.Google Scholar
Ruiz, O., Medina, G.R., Cohen, G., Amat, F. and Navarro, J.C. (2007a) Diversity of the fatty acid composition of Artemia sp. cysts from Argentinean populations. Marine Ecology Progress Series 335, 155165.CrossRefGoogle Scholar
Ruiz, O., Amat, F. and Navarro, J.C. (2007b) A comparative study of the fatty acid profile of Artemia franciscana and A. persimilis cultured at mesocosm scale. Journal of Experimental Marine Biology and Ecology 354, 916.CrossRefGoogle Scholar
Sargent, J., Bell, J.G., McEvoy, L.A., Tocher, D. and Estevez, A. (1999) Recent developments in the essential fatty acid nutrition of fish. Aquaculture 177, 191199.CrossRefGoogle Scholar
Schuler, D. and Conte, G.L. (2009) Genetics and ecological speciation. Proceedings of the National Academy of Sciences of the United States of America 106, 99559962.Google Scholar
Seale, A. (1933) The brine shrimp Artemia as satisfactory live food for fishes. Transactions of the American Fisheries Society 63, 129130.CrossRefGoogle Scholar
Sorgeloos, P. (1980) The use of Brine shrimp Artemia in aquaculture. In Persoone, G., Sorgeloos, P., Roets, O. and Jaspers, E. (eds) The brine shrimp Artemia. Volume 3. Ecology, culturing, use in aquaculture. Wetteren: Universa Press, pp. 2546.Google Scholar
Sorgeloos, P., Lavens, P., Léger, P., Tackaert, W. and Versichele, D. (1986) Manual for the culture and use of brine shrimp Artemia in aquaculture. Ghent: State University of Ghent, Faculty of Agriculture.Google Scholar
Stael, M., Sanggontanagit, T., Van Ballaer, E., Puwapanich, N., Tunsutapanich, A. and Lavens, P. (1995) Decapsulated cysts and Artemia flakes as alternative food sources for the culture of Penaeus monodon postlarvae. In Lavens, P., Jaspers, E. and Roelants, I. (eds) Larvi '95—Book of abstracts. Ostende: European Aquaculture Society, Special Publication 24, pp. 342345.Google Scholar
Sui, L., Wille, M., Cheng, Y. and Sorgeloos, P. (2007) The effect of dietary n-3 HUFA levels and DHA/EPA ratios on growth, survival and osmotic stress tolerance of Chinese mitten crab Eriocheir sinensis larvae. Aquaculture 273, 139150.CrossRefGoogle Scholar
Tandler, A. and Kolkovski, S. (1991) Rates of ingestion and digestibility as limiting factors in the successful use of microdiets in Sparus aurata larval rearing. In Lavens, P., Sorgeloos, P., Jasper, E. and Ollivier, E. (eds) Larvi '91—Fish and crustacean larviculture. Ostende: European Aquaculture Society, Special Publication 15, pp. 169171.Google Scholar
Triantaphyllidis, G.V., Abatzopoulos, T.J. and Sorgeloos, P. (1998) Review of the biogeography of the genus Artemia (Crustacea, Anostraca). Journal of Biogeography 25, 213226.CrossRefGoogle Scholar
Van Stappen, G. (1997) Introduction, biology and ecology of Artemia. In Lavens, P. and Sorgeloos, P. (eds) Manual on the production and use of live food for aquaculture. Rome: FAO, Fisheries Technical Paper 361, pp. 79106.Google Scholar
Van Stappen, G. (2002) Zoogeography. In Abatzopoulos, T.J., Beardmore, J.A., Cleeg, J.S. and Sorgeloos, P. (eds) Artemia basic and applied biology. Dordrecht: Kluwer Academic Publishing, pp. 171215.CrossRefGoogle Scholar
Van Stappen, G., Sui, l., Xin, N. and Sorgeloos, P. (2003) Characterization of high-altitude Artemia populations from the Qinghai–Tibet Plateau, PR China. Hydrobiologia 500, 179192.CrossRefGoogle Scholar
Vanhaecke, P. and Sorgeloos, P. (1980) International study on Artemia. IV. The biometrics of Artemia strains from different geographical origin. In Persoone, G., Sorgeloos, P., Roels, O. and Jaspers, E. (eds) The brine shrimp Artemia. Volume 3. Ecology, culturing, use in aquaculture. Wetteren: Universa Press, pp. 393405.Google Scholar
Vanhaecke, P. and Sorgeloos, P. (1982) International study on Artemia. XVIII. The hatching rate of Artemia cysts—a comparative study. Aquacultural Engineering 1, 263273.CrossRefGoogle Scholar
Vanhaecke, P., Tackaert, W. and Sorgeloos, P. (1987) The biogeography of Artemia: an updated review. In Sorgeloos, P., Bengtson, D.A., Decleir, W. and Jaspers, E. (eds) Artemia research and its applications. Volume 1. Wetteren: Universa Press, pp. 129155.Google Scholar
Vasudevan, S. (2012) Biometrical, morphological and biochemical characterization of three Artemia (Crustacea: Anostraca) populations from South India. International Journal of Artemia Biology 2, 729.Google Scholar
Vos, J., Léger, P., Vanhaecke, P. and Sorgeloos, P. (1984) Quality evaluation of brine shrimp Artemia cysts produced in Asian salt ponds. Hydrobiologia 108, 1723.Google Scholar
Watanabe, T. (1987) Requerimientos de ácidos grasos y nutrición lipidica en los peces. In Espinosa de los Monteros, J. and Labarta, U. (eds) Nutrición en acuicultura, plan de formación de técnicos superiores en acuicultura. Madrid: Feuga, pp. 99165.Google Scholar
Watanabe, T. (1993) Importance of docosahexaenoic acid in marine larval fish. Journal of World Aquaculture Society 24, 152161.CrossRefGoogle Scholar
Watanabe, T., Arakawa, T., Kitajima, C., Fukusho, K. and Fujita, S. (1978) Nutritional quality of living feeds from the viewpoint of essential fatty acids for fish. Bulletin of the Japanese Society for the Science of Fish 44, 12231227.CrossRefGoogle Scholar
Wouters, R., Gomez, L., Lavens, P. and Calderon, J. (1999) Feeding enriched Artemia biomass to Penaeus vannamei broodstock: its effect on reproductive performance and larval quality. Journal of Shellfish Research 18, 651656.Google Scholar
Xin, N., Sun, J., Zhang, B., Triantaphyllidis, G.V., Van Stappen, G. and Sorgeloos, P. (1994) International study on Artemia. LI. New survey of Artemia resources in the People's Republic of China. International Journal of Salt Lake Research 3, 105112.CrossRefGoogle Scholar