Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-22T08:00:48.690Z Has data issue: false hasContentIssue false

Structure and function of nematode assemblages in contaminated sediments: what can we learn from the Mar Piccolo of Taranto (Ionian Sea)?

Published online by Cambridge University Press:  24 August 2018

Annalisa Franzo*
Affiliation:
Oceanography Section, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale – OGS, I-34151 Trieste, Italy
Katja Guilini
Affiliation:
Marine Biology Research Group, Ghent University, Krijgslaan 281, S8, 9000 Ghent, Belgium
Tamara Cibic
Affiliation:
Oceanography Section, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale – OGS, I-34151 Trieste, Italy
Paola Del Negro
Affiliation:
Oceanography Section, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale – OGS, I-34151 Trieste, Italy
*
Correspondence should be addressed to: Annalisa Franzo, Oceanography Section, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale – OGS, I-34151 Trieste, Italy email: [email protected]

Abstract

Free-living nematodes were investigated in the Mar Piccolo of Taranto (Ionian Sea), a semi-enclosed basin of strategic importance for its complex productive infrastructure but in need of remediation due to the alarming amounts of heavy metals and synthetic organic contaminants in the sediments. Abundance, genera composition, biodiversity and trophic traits of nematodes were related to the gradual transition from marine to more brackish conditions and to the varying levels of contaminants in different sub-areas of the basin. Nematodes were more abundant and diverse at the most marine site while low numbers and diversity characterized the most contaminated station. Going towards the innermost part of the basin, gradually increasing values of abundance and biodiversity were observed although the assemblage was susceptible to the organic enrichment caused by mussel farms. The use of nematodes as ecological indicators mirrored the response of the assemblage to the main patterns acting in the basin (High/Good scores at the most marine site and Poor/Bad scores at the most contaminated station), giving a clear indication of environmental quality to stakeholders/authority that can contribute to address remediation actions in contaminated sediments.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alabiso, G., Giacomini, M., Milillo, M. and Ricci, P. (2005) The Mar Piccolo of Taranto: 8 years of physico-chemical measurements. Biologia Marina Mediterranea 12, 369373.Google Scholar
Anderson, M.J., Gorley, R.N. and Clarke, K.R. (2008) PERMANOVA a + for PRIMER: guide to software and statistical methods. Plymouth: Primer-E.Google Scholar
Appeltans, W., Ahyong, S.T., Anderson, G., Angel, M.V., Artois, T., Bailly, N., Bamber, R., et al. (2012) The magnitude of global marine species diversity. Current Biology 22, 21892202.Google Scholar
Balsamo, M., Albertelli, G., Ceccherelli, V.U., Coccioni, R., Colangelo, M.A., Curini-Galletti, M., Danovaro, R., D'Addabbo, R., De Leonardis, C., Fabiano, M., Frontalini, F., Gallo, M., Gambi, C., Guidi, L., Moreno, M., Pusceddu, A., Sandulli, R., Semprucci, F., Todaro, M.A. and Tongiorgi, P. (2010) Meiofauna of the Adriatic Sea: present knowledge and future perspectives. Chemistry and Ecology 26, 4563.Google Scholar
Bongers, T. (1990) The maturity index: an ecological measure of an environmental disturbance based on nematode species composition. Oecologia 83, 1419.Google Scholar
Bongers, T., Alkemade, R. and Yeates, G.W. (1991) Interpretation of disturbance induced maturity decrease in marine nematode assemblages by means of the Maturity Index. Marine Ecology Progress Series 76, 135142.Google Scholar
Bongiorni, L., Fiorentino, F., Auriemma, R., Bernardi Aubry, F., Camatti, E., Camin, F., Nasi, F., Pansera, M., Ziller, L. and Grall, J. (2016) Food web of a confined and anthropogenically affected coastal basin (the Mar Piccolo of Taranto) revealed by carbon and nitrogen isotopes analyses. Environmental Science and Pollution Research 23, 1272512738.Google Scholar
Cardellicchio, N., Annicchiarico, C., Di Leo, A., Giandomenico, S. and Spada, L. (2016a) The Mar Piccolo of Taranto: an interesting marine ecosystem for the environmental problems studies. Environmental Science and Pollution Research 23, 1249512501.Google Scholar
Cardellicchio, N., Buccolieri, A., Giandomenico, S., Lopez, L., Pizzulli, F. and Spada, L. (2007) Organic pollutants (PAHs, PCBs) in sediments from the Mar Piccolo in Taranto (Ionian Sea, Southern Italy). Marine Pollution Bulletin 55, 451458.Google Scholar
Cardellicchio, N., Covelli, S. and Cibic, T. (2016b) Integrated environmental characterization of the contaminated marine coastal area of Taranto, Ionian Sea (Southern Italy). Environmental Science and Pollution Research 23, 1249112494.Google Scholar
Cibic, T., Bongiorni, L., Borfecchia, F., Di Leo, A., Franzo, A., Giandomenico, S., Karuza, A., Micheli, C., Rogelja, M., Spada, L. and Del Negro, P. (2016) Ecosystem functioning approach applied to a large contaminated coastal site: the study case of the Mar Piccolo of Taranto (Ionian Sea). Environmental Science and Pollution Research 23, 1273912754.Google Scholar
Clarke, K.R. and Ainsworth, M. (1993) A method of linking multivariate community structure to environmental variables. Marine Ecology Progress Series 92, 205219.Google Scholar
Clarke, K.R. and Warwick, R.M. (2001) Changes in marine communities: an approach to statistical analysis and interpretation, 2nd edition. Plymouth: Primer-E.Google Scholar
Di Leo, A., Annicchiarico, C., Cardellicchio, N., Cibic, T., Comici, C., Giandomenico, S. and Spada, L. (2016) Mobilization of trace metals and PCBs from contaminated marine sediments of the Mar Piccolo of Taranto during simulated resuspension experiments. Environmental Science and Pollution Research 23, 1277712790.Google Scholar
Franzo, A., Auriemma, R., Nasi, F., Vojvoda, J., Pallavicini, A., Cibic, T. and Del Negro, P. (2016) Benthic ecosystem functioning in the severely contaminated Mar Piccolo of Taranto (Ionian Sea, Italy): focus on heterotrophic pathways. Environmental Science and Pollution Research 23, 1264512661.Google Scholar
Guilini, K., Bezerra, T.N., Eisendle-Flöckner, U., Deprez, T., Fonseca, G., Holovachov, O., Leduc, D., Miljutin, D., Moens, T., Sharma, J., Smol, N., Tchesunov, A., Mokievsky, V., Vanaverbeke, J., Vanreusel, A., Venekey, V. and Vincx, M. (2017) Nemys: world database of free-living marine nematodes. Available at http://nemys.ugent.be.Google Scholar
Heip, C., Vincx, M. and Vranken, G. (1985) The ecology of marine nematodes. Oceanography and Marine Biology: An Annual Review 23, 399489.Google Scholar
Losi, V., Ferrero, T.J., Moreno, M., Gaozza, L., Rovere, A., Firpo, M., Marques, J.C. and Albertelli, G. (2013) The use of nematodes in assessing ecological conditions in shallow waters surrounding a Mediterranean harbour facility. Estuarine, Coastal and Shelf Science 130, 209221.Google Scholar
Margalef, R. (1986) Ecologia. Barcelona: Omega.Google Scholar
Marin, V., Moreno, M., Vassallo, P., Vezzulli, P. and Fabiano, M. (2008) Development of a multistep indicator-based approach (MIBA) for the assessment of environmental quality of harbours. International Council for the Exploration of the Sea, Journal of Marine Science 65, 14361441.Google Scholar
Moreno, M., Albertelli, G. and Fabiano, M. (2009) Nematode response to metal, PAHs and organic enrichment in tourist marinas of the Mediterranean Sea. Marine Pollution Bulletin 58, 11921201.Google Scholar
Moreno, M., Ferrero, T.J., Gallizia, I., Vezzulli, L., Albertelli, G. and Fabiano, M. (2008) An assessment of the spatial heterogeneity of environmental disturbance within an enclosed harbour through the analysis of meiofauna and nematode assemblages. Estuarine, Coastal and Shelf Science 77, 565576.Google Scholar
Moreno, M., Semprucci, F., Vezzulli, L., Balsamo, M., Fabiano, M. and Albertelli, G. (2011) The use of nematodes in assessing ecological quality status in the Mediterranean coastal ecosystems. Ecological Indicators 11, 328336.Google Scholar
Odum, E.P. (1983) Basic ecology. New York, NY: Saunders College Pub.Google Scholar
Platt, H.M. and Warwick, R.M. (1983) Free-living marine nematodes. Part. I. British Enoplids. Synopses of the British Fauna 28. Cambridge: Cambridge University Press.Google Scholar
Platt, H.M. and Warwick, R.M. (1988) Free-living marine nematodes. Part II. British chromadorids. Synopses of the British Fauna, 38. Leiden: EJ Brill, 502 pp.Google Scholar
Rubino, F., Cibic, T., Belmonte, M. and Rogelja, M. (2016) Microbenthic community structure and trophic status of sediments in the Mar Piccolo of Taranto (Mediterranean, Ionian Sea). Environmental Science and Pollution Research 23, 1262412644.Google Scholar
Sandulli, R., Carriglio, D., Deastis, S., Marzano, A., Gallo D'Addabbo, M., Gerardi, D. and De Zio Grimaldi, S. (2004) Meiobenthic biodiversity in areas of the Gulf of Taranto (Italy) exposed to high environmental impact. Chemistry and Ecology 20, 379386.Google Scholar
Schratzberger, M., Forster, R.M., Goodsir, F. and Jennings, S. (2008) Nematode community dynamics over an annual production cycle in the central North Sea. Marine Environmental Research 66, 508519.Google Scholar
Schratzberger, M. and Ingels, J. (2018) Meiofauna matters: the roles of meiofauna in benthic ecosystems. Journal of Experimental Marine Biology and Ecology 502, 1225.Google Scholar
Seinhorst, J.W. (1959) A rapid method for the transfer of nematodes from fixative to anhydrous glycerine. Nematologica 4, 6769.Google Scholar
Semprucci, F., Frontalini, F., Sbrocca, C., Armynot du Châtelet, E., Bout-Roumazeilles, V., Coccioni, R. and Balsamo, M. (2015a) Meiobenthos and free-living nematodes as tools for biomonitoring environments affected by riverine impact. Environmental Monitoring Assessment 187, 251.Google Scholar
Semprucci, F., Losi, V. and Moreno, M. (2015b) A review of Italian research on free-living marine nematodes and the future perspectives on their use as Ecological Indicators (EcoInds). Mediterranean Marine Science 16, 352365. doi: 10.12681/mms.1072.Google Scholar
Shannon, C.E. and Weaver, W. (1949) The mathematical theory of communication. Urbana, IL: Illinois Press.Google Scholar
Vermuelen, S., Sturaro, N., Gobert, S., Bouquegneau, J.M. and Lepoint, G. (2011) Potential early indicators of anthropogenically derived nutrients: a multiscale stable isotope analysis. Marine Ecology Progress Series 422, 922.Google Scholar
Villano, N. and Warwick, R.M. (1995) Meiobenthic communities associated with the seasonal cycle of growth and decay of Ulva rigida Agardh in the Palude della Rosa, Lagoon of Venice. Estuarine, Coastal and Shelf Science 41, 181194.Google Scholar
Warwick, R.M., Platt, H.M. and Somerfield, P.J. (1998) Free-living marine nematodes. Part III. British Monhysterids. Synopses of the British Fauna 53. Shrewsbury: Field Studies Council, 296 pp.Google Scholar
Wieser, W. (1953) Die Beziehung zwischen Mundhöhlengestalt, Ernährungsweise und Vorkommen bei freilebenden marinen nematoden. Eine oekologisch morphologische studie. Arkive Zoologische II(4), 439484.Google Scholar