Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T15:16:57.520Z Has data issue: false hasContentIssue false

Sterol and fatty acid composition of four marine haptophycean algae

Published online by Cambridge University Press:  11 May 2009

J. K. Volkman
Affiliation:
Organic Geochemistry Unit, School of Chemistry, University of Bristol
D. J. Smith
Affiliation:
Organic Geochemistry Unit, School of Chemistry, University of Bristol
G. Eglinton
Affiliation:
Organic Geochemistry Unit, School of Chemistry, University of Bristol
T. E. V. Forsberg
Affiliation:
The Laboratory, Marine Biological Association, Citadel Hill, Plymouth
E. D. S. Corner
Affiliation:
The Laboratory, Marine Biological Association, Citadel Hill, Plymouth

Extract

The lipids of four marine coccolithophorids (class Haptophyceae), Emiliania huxleyi, Hymenomonas carterae, Isochrysis galbana and Crystallolithus hyalinus, were examined by capillary gas chromatography-mass spectrometry. Fatty acids ranged from C14 to C22 and were predominantly of even chain length. The major acids were polyunsaturated C18 acids, 22:6 and either 14:0 or 16:0. C20 fatty acids were of low abundance. Significant amounts of octadecapentaenoic acid (18:5), previously thought to be unique to dinoflagellates, were identified in three of the algae. A small amount of a di-unsaturated C36 w-alkenoic acid was identified in E. huxleyi, which is the first report of such a long-chain fatty acid in any alga. Traces of wax esters, which are reportedly uncommon inalgae, were found in three of the species. The sterol distributions were very simple, with two or three compounds accounting for > 99% of the total sterols. In each case, the major component was 24-methylcholesta-5,22E-dien-3β-ol. H. carterae and C. hyalinus also contained 24-ethylcholesta-5,22E-dien-3β-ol and significant amounts of cholest-5-en-3β-ol were found in E. huxleyi and I. galbana. An unusual sterol, 23,24-dimethylcholesta-5,22E-dien-3β-ol, was identified in H. carterae. These sterols were mostly non-esterified although small amounts of sterol esters were identified in E. huxleyi. The lipid composition of E. huxleyi is distinctive in that it contains, in addition to the C36 fatty acid, novel C37–C39 unsaturated ketones and C31–C38 alkenes. Of the other coccolithophorids only I. galbana contained small quantities of one of the C3l alkenes.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackman, R. G. & Burgher, R. D., 1965. Cod liver oil fatty acids as secondary reference standards in the GLC of polyunsaturated fatty acids of animal origin: analysis of a dermal oil of the Atlantic leatherback turtle. Journal of the American Oil Chemists Society, 42, 3842.CrossRefGoogle ScholarPubMed
Ackman, R. G., Sipos, J. C. & Jangaard, P. M., 1967. A quantitation problem in the open tubular gas chromatography of fatty acid esters from cod liver lipids. Lipids, 2, 251257.CrossRefGoogle ScholarPubMed
Alam, M., Sansing, T. B., Busby, E. L., Martiniz, D. R. & Ray, S. M., 1979. Dinoflagellate sterols. I. Sterol composition of the dinoflagellates of Gonyaulax species. Steroids, 33, 197203.CrossRefGoogle ScholarPubMed
Ando, T., Kanazawa, A., Teshima, S. & Miyawaki, H., 1979. Sterol components of coral-reef molluscs. Marine Biology, 50, 169173.CrossRefGoogle Scholar
Antia, N. J., Lee, R. F., Nevenzel, J. C. & Cheng, J. Y., 1974. Wax ester production by the marine cryptomonad Chroomonas salina grown photoheterotrophically on glycerol. Journal of Protozoology, 21, 768771.CrossRefGoogle ScholarPubMed
Arpin, N., Svec, W. A. & Liaaen-Jensen, S., 1976. New fucoxanthin-related carotenoids from Coccolithus huxleyi. Phytochemistry, 15, 529532.CrossRefGoogle Scholar
Ballantine, J. A., Lavis, A. & Morris, R. J., 1979 a. Sterols of the phytoplankton - effects of illumination and growth stage. Phytochemistry, 18, 14591466.CrossRefGoogle Scholar
Ballantine, J. A., Lavis, A. & Morris, R. J., 1979 b. Marine sterols. VIII. The sterol compositions of two marine sponges. Occurrence of new C26 and C30 stanols in an oceanic sponge. Comparative Biochemistry and Physiology, 63B, 119123.Google Scholar
Ballantine, J. A., Lavis, A., Roberts, J. C. & Morris, R. J., 1977. Marine sterols V. Sterols of some Tunicata. The occurrence of saturated ring sterols in these filter-feeding organisms. Journal of Experimental Marine Biology and Ecology, 30, 2944.CrossRefGoogle Scholar
Bishop, D. G., Bain, J. M. & Downton, W. J. S., 1976. Ultrastructure and lipid composition of zooxanthellae from Tridacna maxima. Australian Journal of Plant Physiology, 3, 3340.Google Scholar
Boutry, J. L., Saliot, A. & Barbier, M., 1979. The diversity of marine sterols and the role of algal biomasses; from facts to hypothesis. Experientia, 35, 15411543.CrossRefGoogle ScholarPubMed
Brassell, S. C., Comet, P. A., Eglinton, G., Isaacson, P. J., Mcevoy, M., Maxwell, J. R., Thomson, I. D., Tibbetts, P. J. C. & Volkman, J. K., 1980. Preliminary lipid analyses of Sections 440A-7–6, 440B-3–5, 440B-8–4, 440B-68–2 and 436–11–4: Legs 56 and 57. In Deep Sea Drilling Project (ed. Von Huene, R.et al.), pp. 13671390. U.S. Government Printing Office.Google Scholar
Brooks, C. J. W., Horning, E. C. & Young, J. S., 1968. Characterization of sterols by gas chromatography-mass spectrometry of the trimethylsilyl ethers. Lipids, 3, 391402.CrossRefGoogle ScholarPubMed
Chuecas, L. & Riley, J. P., 1969. Component fatty acids of the total lipids of some marine phyto-plankton. Journal of the Marine Biological Association of the United Kingdom, 49, 97116.CrossRefGoogle Scholar
De Jong, E., Van Rens, L., Westbroek, P. & Bosch, L., 1979. Biocalcification by the marine alga Emiliania huxleyi (Lohmann) Kamptner. European Journal of Biochemistry, 99, 559567.CrossRefGoogle ScholarPubMed
De Mort, C. I., Lowry, R., Tinsley, I. & Phinney, H. K., 1972. The biochemical analysis of some estuarine phytoplankton species. Fatty acid composition. Journal of Phycology, 8, 211216.CrossRefGoogle Scholar
De Souza, N. J. & Nes, W. R., 1968. Sterols: isolation from a blue-green alga. Science, NewYork, 162, 363.CrossRefGoogle ScholarPubMed
Flchtinger-Schepman, A. M. J., Kamerling, J. P., Vliegenthart, J. F. G., De Jong, E. W., Bosch, L. & Westbroek, P., 1979. Composition of a methylated, acidic polysaccharide associated with coccoliths of Emiliania huxleyi (Lohmann) Kamptner. Carbohydrate Research, 69, 181189.CrossRefGoogle Scholar
Fiksdahl, A., Liaaen-Jensen, S. & Siegelman, H. W., 1978. Carotenoids of Coccolithus huxleyi. Biochemical Systematics and Ecology, 7, 4748.CrossRefGoogle Scholar
Fujino, Y. & Ohnishi, M., 1979. Characterization and composition of sterols in the free and esterified sterol fractions of Aspergillus oryzae. Lipids, 14, 663668.CrossRefGoogle Scholar
Gagosian, R. B. & Nigrelli, G. E., 1979. The transport and budget of sterols in the western North Atlantic Ocean. Limnology and Oceanography, 24, 838849.CrossRefGoogle Scholar
Gershengorn, M. C., Smith, A. R. H., Goulston, G., Goad, L. J., Goodwin, T. W. & Haines, T. H., 1968. The sterols of Ochromonas danica and Ochromonas malhamensis. Biochemistry, 7, 16981706.CrossRefGoogle ScholarPubMed
Grob, K. & Grob, G., 1979. Practical capillary gas chromatography - a systematic approach. Journal of High Resolution Chromatography and Chromatography Communications, 2,109117.CrossRefGoogle Scholar
Guillard, R. R. L., 1972. The culture of phytoplankton for feeding marine invertebrates. In The Culture of Marine Invertebrate Animals (ed. Smith, W. L. and Chanley, M. H.), pp. 2960. New York and London: Plenum Press.Google Scholar
Hertzberg, S., Mortensen, T., Borch, G., Siegelman, H. W. & Liaaen-Jensen, S., 1977. Algal carotenoids. Part 20. On the absolute configuration of 19′-hexanoyloxyfucoxanthin. Phyto-chemistry, 16, 587590.Google Scholar
Hilenski, L. L., Walne, P. L. & Snyder, F., 1976. Aliphatic chains of esterified lipids in isolated eyespots of Euglena gracilis var. bacillaris. Plant Physiology, 57, 645646.CrossRefGoogle ScholarPubMed
Johns, R. B., Nichols, P. D. & Perry, G. J., 1979. Fatty acid composition of ten marine algae from Australian waters. Phytochemistry, 18, 799802.CrossRefGoogle Scholar
Joseph, J. D., 1975. Identification of 3,6,9,12,15-octadecapentaenoic acid in laboratory cultured photosynthetic dinofiagellates. Lipids, 10, 395403.CrossRefGoogle Scholar
Kanazawa, A., Teshima, S., Ando, T. & Tomita, S., 1974. Occurrence of 23,24-dimethylcholesta-5,22-dien-3β-ol in a soft coral Sarcophyta elegans. Bulletin of the Japanese Society of Scientific Fisheries, 40, 729.CrossRefGoogle Scholar
Kanazawa, A., Yoshioka, M. & Teshima, S., 1971. The occurrence of brassicasterol in the diatoms Cyclotella nana and Nitzschia closterium. Bulletin of the Japanese Society of Scientific Fisheries, 37, 899903.CrossRefGoogle Scholar
Kates, M., Temblay, P., Anderson, R. & Volcani, B. E., 1978. Identification of the free and conjugated sterol in a non-photosynthetic diatom Nitzschia alba as 24-methylene cholesterol. Lipids, 13, 3441.CrossRefGoogle Scholar
Lee, C., Gagosian, R. B. & Farrington, J. W., 1980. Geochemistry of sterols in sediments from the Black Sea and the southwest African shelf and slope. Organic Geochemistry, 2, 103113.CrossRefGoogle Scholar
Litchfield, C., Tyszkiewicz, J., Marcantonio, E. E. & Noto, G., 1979. 15,18,21,24-Triacontatetraenoic and 15,18,21,24,27-triacontapentaenoic acids: new C30 fatty acids from the marine sponge Cliona celata. Lipids, 14, 619622.CrossRefGoogle Scholar
Mcintyre, A. & Be, A. W. H., 1967. Modern coccolithophoridae of the Atlantic Ocean. I. Placoliths and cyrtoliths. Deep-Sea Research, 14, 561597.Google Scholar
Maxwell, J. R., Mackenzie, A. S. & Volkman, J. K., 1980. Configuration at C-24 in steranes and sterols. Nature, London, 286, 694697.CrossRefGoogle Scholar
Mayzaud, P., Eaton, C. A. & Ackman, R. G., 1976. The occurrence and distribution of octadecapentaenoic acid in a natural plankton population. A possible food chain index. Lipids, 11, 858862..CrossRefGoogle Scholar
Mercer, E. I., London, R. A., Kent, I. S. A. & Taylor, A. J., 1974. Sterols, sterol esters arid fatty acids of Botrydium granulatum, Tribonetna aequale and Monodus subterraneus. Phyto-chemistry, 13, 845852.Google Scholar
Nishimura, M. & Koyama, T., 1977. The occurrence of stanols in various living organisms and the behaviour of sterols in contemporary sediments. Geochimica et cosmochimica acta, 41, 379385.CrossRefGoogle Scholar
Norgard, S., Svec, W. A., Liaaen-Jensen, S., Jensen, A. & Guillard, R. R. L., 1974. Algal carotenoids and chemotaxonomy. Biochemical Systematics and Ecology, 2, 79.CrossRefGoogle Scholar
O'hara, S. C. M., Corner, E. D. S. & Kilvington, C. C., 1978. On the nutrition and metabolism of zooplankton. XII. Measurements by radioimmunoassay of the levels of a steroid in Calanus. Journal of the Marine Biological Association of the United Kingdom, 58, 597605.CrossRefGoogle Scholar
O'hara, S. C. M., Gaskell, S. J. & Corner, E. D. S., 1979. On the nutrition and metabolism of zooplankton. XIII. Further studies of steroids in Calanus. Journal of the Marine Biological Association of the United Kingdom, 59, 331340.CrossRefGoogle Scholar
Okada, H. & Honjo, S., 1973. The distribution of oceanic coccolithophorids in the Pacific. DeepSea Research, 20, 355374.Google Scholar
Okada, H. & Mcintyre, A., 1977. Modern coccolithophores of the Pacific and north Atlantic Ocean. Micropaleontology, 23, 155.CrossRefGoogle Scholar
Oliver, J. D. & Colwell, R. R., 1973. Extractable lipids of Gram-negative marine bacteria. Phospholipid composition. Journal of Bacteriology, 114, 897908.CrossRefGoogle ScholarPubMed
Orcutt, D. M. & Patterson, G. W., 1975. Sterol, fatty acid and elemental composition of diatoms grown in chemically defined media. Comparative Biochemistry and Physiology, 50B, 579583.Google ScholarPubMed
Orcutt, D. M. & Richardson, B., 1970. Sterols of Oocystis polymorpha, a green alga. Steroids, 16, 429446.CrossRefGoogle ScholarPubMed
Paoletti, C., Pushparaj, B., Florenzano, G., Capella, P. & Lercker, G., 1976. Unsaponifiable matter of green and blue-green algal lipids as a factor of biochemical differentiation of their biomasses: 1. Terpenic alcohol and sterol fractions. Lipids, 11, 266271.CrossRefGoogle Scholar
Parke, M. & Dlxon, P. S., 1976. Check-list of British marine algae - third revision. Journal of the Marine Biological Association of the United Kingdom, 56, 527594.CrossRefGoogle Scholar
Rubinstein, I. & Goad, L. J., 1974. Occurrence of (24S)-24-methylcholesta-5, 22E-dien-3β-ol in the diatom Phaeodactylum tricornutum. Phytochemistry, 13, 485487.CrossRefGoogle Scholar
Sargent, J. R., Gatten, R. R. & Mcintosh, R., 1977. Wax esters in the marine environment-their occurrence, formation, transformation and ultimate fates. Marine Chemistry, 5, 573584.CrossRefGoogle Scholar
Teshima, S. & Kanazawa, A., 1972. Occurrence of sterols in the blue-green alga, Anabaena cylindrica. Bulletin of the Japanese, Society of Scientific Fisheries, 38, 11971202.CrossRefGoogle Scholar
Volkman, J. K., Corner, E. D. S. & Eglinton, G., 1980. Transformations of biolipids in the marine food web and in underlying bottom sediments. In Colloques Internationaux du C.N.R.S. No. 293 - Biogéochimie de la matiére organique à l'interface eau-sediment marin; pp. 185–197. Paris: Editions C.N.R.S.Google Scholar
Volkman, J. K., Eglinton, G. & Corner, E. D. S., 1980. Sterols and fatty acids of the marine diatom Biddulphia sinensis. Phytochemistry, 19, 18091813.CrossRefGoogle Scholar
Volkman, J. K., Eglinton, G., Corner, E. D. S. & Forsberg, T. E. V., 1980 a. Long chain alkenes and alkenones in the marine coccolithophorid Emiliania huxleyi. Phytochemistry, 19, 26192622.CrossRefGoogle Scholar
Volkman, J. K., Eglinton, G., Corner, E. D. S. & Sargent, J. R., 1980 b. Novel unsaturated straight chain C37-C39 methyl and ethyl ketones in marine sediments and a coccolithophore Emiliania huxleyi. In Advances in Organic Geochemistry 1979 (ed. Douglas, A. G. and Maxwell, J. R.). Oxford: Pergamon Press. (In the Press.)Google Scholar
Wardroper, A. M. K., Maxwell, J. R. & Morris, R. J., 1978. Sterols of a diatomaceous ooze from Walvis Bay. Steroids, 32, 203221.CrossRefGoogle ScholarPubMed
Watanabe, T. & Ackman, R. G., 1974. Lipids and fatty acids of the American (Crassostrea virginica) and European flat (Ostrea edulis) oysters from a common habitat, after one feeding with Dicrateria inornata or Isochrysis galbana. Journal of the Fisheries Research Board of Canada, 31, 403409.CrossRefGoogle Scholar
Withers, N. W. & Nevenzel, J. C., 1977. Phytyl esters in a marine dinoflagellate. Lipids, 12, 989993.CrossRefGoogle Scholar
Wright, D. C., Berg, L. R. & Patterson, G. W., 1980. Effect of cultural conditions on the sterols and fatty acids of green algae. Phytochemistry, 19, 783785.CrossRefGoogle Scholar