Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-03T15:37:07.906Z Has data issue: false hasContentIssue false

Some biochemical and physiological aspects of growth and gametogenesis in Crassostrea gigas and Ostrea edulis grown at sustained elevated temperatures*

Published online by Cambridge University Press:  11 May 2009

Roger Mann
Affiliation:
Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543

Extract

Crassostrea gigas (Thunberg) and Ostrea edulis L. were grown at sustained temperatures of 12°, 15°, 18° and 21°C for a period of 19 weeks. Regular assays of weight specific ammonia excretion rate were made, following which animals were sacrificed for estimation of dry meat weight, dry shell weight, biochemical composition (percentage carbon, nitrogen, carbohydrate, ash) and gonadal development (histological assessment). Crassostrea gigas grew from an intial live weight of 5·2 g to values of 23·5, 28·2, 34·6 and 38·7 g at 120, 150, 180 and 21 °C respectively.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Contribution No. 4040 from the Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, U.S.A. 02543.

References

Bayne, B. L., 1973. Physiological changes in Mytilus edulis L. induced by temperature and nutritive stress. Journal of the Marine Biological Association of the United Kingdom, 53, 3958.CrossRefGoogle Scholar
Bayne, B. L. & Scullard, C., 1977. Rates of nitrogen excretion by species of Mytilus (Bivalvia: Mollusca). Journal of the Marine Biological Association of the United Kingdom, 57, 355369.CrossRefGoogle Scholar
Bayne, B. L., Widdows, J. & Worrall, C., 1977. Some temperature relationships in the physiology of two ecologically distinct bivalve populations. In Physiological Responses of Marine Biota to Pollutants (ed. Vernberg, F. J. et al.), pp. 379400. New York: Academic Press.CrossRefGoogle Scholar
Bernard, F. R., 1974. Annual biodeposition and gross energy budget of mature Pacific oysters, Crassostrea gigas. Journal of the Fisheries Research Board of Canada, 31, 185190.CrossRefGoogle Scholar
Cole, H. A., 1941. The fecundity of Ostrea edulis. Journal of the Marine Biological Association of the United Kingdom, 25, 243260.CrossRefGoogle Scholar
Cole, H. A., 1942. Primary sex-phases in Ostrea edulis. Quarterly Journal of Microscopical Science, 83 317356.Google Scholar
Fujiya, M., 1970. Oyster farming in Japan. Helgoländer wissenschaftliche Meeresuntersuchungen, 20, 464679.CrossRefGoogle Scholar
Gabbott, P. A., 1975. Storage cycles in marine bivalve molluscs: a hypothesis concerning the relationship between glycogen metabolism and gametogenesis. In Proceedings of the Ninth European Marine Biology Symposium (ed. Barnes, H.), pp. 191211. Aberdeen: Aberdeen University Press.Google Scholar
Gabbott, P. A. & Bayne, B. L., 1973. Biochemical effects of temperature and nutritive stress on Mytilus edulis L. Journal of the Marine Biological Association of the United Kingdom, 53, 269286.CrossRefGoogle Scholar
Gabbott, P. A. & Stephenson, R. R., 1974. A note on the relationship between the dry weight condition index and the glycogen content of adult oysters (Ostrea edulis L.) kept in the lab-oratory. Journal du Conseil, 35, 359361.CrossRefGoogle Scholar
Gabbott, P. A. & Walker, A. J. M., 1971. Changes in the condition index and biochemical content of adult oysters (Ostrea edulis L.) maintained under hatchery conditions. Journal du Conseil, 34, 99106.CrossRefGoogle Scholar
Giese, A. C., 1959. Comparative physiology: annual reproductive cycles of marine invertebrates. Annual Review of Physiology, 21, 547576.CrossRefGoogle ScholarPubMed
Hammen, C. S., Miller, H. F. & Geer, W. H., 1966. Nitrogen excretion of Crassostrea virginica. Comparative Biochemistry and Physiology, 17, 11991200.CrossRefGoogle Scholar
Holland, D. A. & Chew, K. K., 1974. Reproductive cycle of the Manila clam (Venerupis japonica) from Hood Canal, Washington. Proceedings of the National Shellfisheries Association, 64, 5358.Google Scholar
Holland, D. L. & Hannant, P. J., 1976. The glycogen content in winter and summer of oyster, Ostrea edulis L., of different ages. Journal du Conseil, 36, 240242.CrossRefGoogle Scholar
Humason, G. L., 1962. Animal Tissue Techniques. 561 pp. San Francisco: W. H. Freeman & Co.CrossRefGoogle Scholar
Kennedy, A. V. & Battle, H. I., 1964. Cyclic changes in the gonad of the American oyster. Crassostrea virginica (Gmelin). Canadian Journal of Zoology, 42, 305321.CrossRefGoogle Scholar
Loosanoff, V. L., 1962. Gametogenesis and spawning of the European oyster, O. edulis, in waters of Maine. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 122, 8694.CrossRefGoogle Scholar
Lubet, P., 1959. Recherches sur le cycle sexuel et remission des gametes chez les Mytilidae et les Pectinidae (Moll. Bivalves). Revue des travaux de I'Office (scientifique et technique) des pSches maritimes, 23, 387548.Google Scholar
Lubet, P., 1973. Exposé synoptique des données biologique sur la moule Mytilus galloprovincialis (Lamarck 1819). F.A.O. Fisheries Synopsis, no. 88, 50 pp.Google Scholar
Lum, S. C. & Hammen, C. S., 1964. Ammonia excretion of Lingula. Comparative Biochemistry and Physiology, 12, 185190.CrossRefGoogle ScholarPubMed
Malouf, R. E. & Breese, W. P., 1977. Seasonal changes in the effects of temperature and water flow rate on the growth of juvenile Pacific oysters, Crassostrea gigas (Thunberg). Aquaculture, 12, 113.CrossRefGoogle Scholar
Mann, R. & Glombs, S. J., 1978. The effect of temperature on growth and ammonia excretion of the Manila clam Tapes japonica. Estuarine and Coastal Marine Science, 6, 335339.CrossRefGoogle Scholar
Millar, R. H., 1963. Breeding and gonadal cycle of oysters in Loch Ryan, Scotland. Journal du Conseil, 28, 432439.CrossRefGoogle Scholar
Nagabhushanam, R., 1963 a. Observations on the neurosecretory cells in the lamellibranch, Spisula solidissima (Dillwyn). Nucleus, 6, 99102.Google Scholar
Nagabhushanam, R., 1963 b. Neurosecretory cycle and reproduction in the bivalve, Crassostrea virginica. Indian Journal of Experimental Biology, 1, 161162.Google Scholar
Nagabhushanam, R., 1964. Neurosecretory changes in the nervous system of the oyster, Crassostrea virginica, induced by various experimental conditions. Indian Journal of Experimental Biology, 2, 14.Google Scholar
Newell, R. C., Johnson, L. G. & Kofoed, L. H., 1977. Adjustment of the components of energy balance in response to temperature change in Ostrea edulis. Oecologia, 30, 97110.CrossRefGoogle ScholarPubMed
Price, K. S. Jr., & Maurer, D., 1971. Holding and spawning Delaware Bay oysters (Crassostrea virginica) out of season. II. Temperature requirements for maturation of gonads. Proceedings of the National Shellfisheries Association, 61, 2934.Google Scholar
Quick, J. A., 1971. A preliminary investigation: the effect of elevated temperature on the American oyster, Crassostrea virginica (Gmelin). Professional Papers Series. Marine Research Laboratory, Florida Department of Natural Resources, no. 15, 190 pp.Google Scholar
Ropes, J. W., 1968. Reproductive cycle of the surf clam, Spisula solidissima, in offshore New Jersey. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 135, 349365.CrossRefGoogle ScholarPubMed
Sastry, A. N., 1975. Physiology and ecology of reproduction in marine invertebrates. In Physio-logical Ecology of Estuarine Organisms (ed. Vernberg, F. J.), pp. 279299. Columbia, S. Carolina: University of S. Carolina Press.Google Scholar
Solorzano, L., 1969. Determination of ammonia in natural waters by the phenolhypochlorite method. Limnology and Oceanography, 14, 799801.Google Scholar
Strickland, J. D. H. & Parsons, T. R., 1968. A practical handbook of seawater analysis. Bulletin. Fisheries Research Board of Canada, no. 167, 310 pp.Google Scholar
Walne, P. R., 1958. Growth of oysters (Ostrea edulis L.). Journal of the Marine Biological Association of the United Kingdom, 37, 591602.CrossRefGoogle Scholar
Walne, P. R., 1970. The seasonal variation of meat and glycogen content of seven populations of oysters, Ostrea edulis, and a review of the literature. Fishery Investigations. Ministry of Agriculture, Fisheries and Food, series 2, 26, 35 pp.Google Scholar
Walne, P. R., 1972. The influence of current speed, body size and water temperature on the filtration rate of five species of bivalves. Journal of the Marine Biological Association of the United Kingdom, 52, 345374.CrossRefGoogle Scholar
Walne, P. R. & Mann, R., 1975. Growth and biochemical composition in Ostrea edulis and Crassostrea gigas. In Proceedings of the Ninth European Marine Biology Symposium (ed. Barnes, H.), pp. 587607. Aberdeen: Aberdeen University Press.Google Scholar