Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-09T00:12:37.327Z Has data issue: false hasContentIssue false

Similar effects on sediment structure and infaunal community of two competitive intertidal soft-bottom burrowing crab species

Published online by Cambridge University Press:  29 March 2011

Paulina Martinetto*
Affiliation:
Laboratorio De Ecología, Departamento De Biología (FCEyN), Universidad Nacional de Mar del Plata, CC573 Correo Central B7600WAG, Mar del Plata, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina)
Gabriela Palomo
Affiliation:
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina) Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’, Avenida Angel Gallardo 470 3er Piso Lab 57, C1405DJR Ciudad Autónoma de Buenos Aires, Argentina
Martin Bruschetti
Affiliation:
Laboratorio De Ecología, Departamento De Biología (FCEyN), Universidad Nacional de Mar del Plata, CC573 Correo Central B7600WAG, Mar del Plata, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina)
Oscar Iribarne
Affiliation:
Laboratorio De Ecología, Departamento De Biología (FCEyN), Universidad Nacional de Mar del Plata, CC573 Correo Central B7600WAG, Mar del Plata, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina)
*
Correspondence should be addressed to: P. Martinetto, Laboratorio De Ecología Departamento De Biología (FCEyN), Universidad Nacional de Mar del Plata, CC573 Correo Central B7600WAG, Mar del Plata, Argentina email: [email protected]

Abstract

The intertidal crabs Neohelice granulata and Cyrtograpsus angulatus are common on the south-west Atlantic coast but they rarely share the same microhabitat. They are similar in size and in several life history traits which promote competition. Neohelice granulata is the dominant species in intertidal soft-sediment and salt-marsh areas from southern Brazil to northern Patagonia Argentina, where it forms extensive burrowing beds. Its burrowing activity affects sediment characteristics as well as the infaunal community. When both species coexist N. granulata constrains the distribution and modifies some population characteristics and burrowing behaviour of C. angulatus. However, C. angulatus live in burrows forming dense burrowing beds in soft-bottom intertidal areas where N. granulata is absent. Where both species coexist, C. angulatus rarely constructs burrows and N. granulata clearly dominate soft-sediment areas forming conspicuous burrowing beds. This suggests that these crab species could have similar ecological roles in some effects on sediments related to burrowing activities. In this study, we experimentally compare their effects on sediment characteristics and infaunal community. The results of the experiment showed that C. angulatus modify sediment water and organic matter contents and grain size–frequency distributions similarly to N. granulata. Neither N. granulata nor C. angulatus affected the mean abundance of infaunal organisms during the experiment but their variances showed the same patterns in many cases, indicating similar effects. These results indicate that C. angulatus can modify sediment characteristics similarly to N. granulata, and has similar interactions with infaunal species.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abrams, P. (1983) The theory of limiting similarity. Annual Review of Ecology and Systematics 14, 359376.CrossRefGoogle Scholar
Amarasekare, P. (2003) Competitive coexistence in spatially structured environments: a synthesis. Ecology Letters 6, 11091122.Google Scholar
Bolker, B.M. and Pacala, S.W. (1999) Spatial moment equations for plant competition: understanding spatial strategies and the advantage of short dispersal. American Naturalist 153, 575602.Google Scholar
Bortolus, A. and Iribarne, O. (1999) Effects of the burrowing crab Chasmagnathus granulata on a Spartina salt marsh. Marine Ecology Progress Series 178, 7888.CrossRefGoogle Scholar
Boschi, E.E. (2000) Species of decapods crustaceans and their distribution in the American marine biogeographic provinces. Revista de Investigación y Desarrollo Pesquero (Argentina) 13, 1136.Google Scholar
Botto, F. and Iribarne, O. (1999) The effect of the burrowing crab Chasmagnathus granulata on the benthic community of a SW Atlantic coastal lagoon. Journal of Experimental Marine Biology and Ecology 241, 263284.Google Scholar
Botto, F. and Iribarne, O. (2000) Contrasting effects of two burrowing crabs (Chasmagnathus granulata and Uca uruguayensis) on sediment composition and transport in estuarine environments. Estuarine, Coastal and Shelf Science 51, 141151.Google Scholar
Botto, F., Palomo, G., Iribarne, O. and Martinez, M.M. (2000) The effect of the Southwestern Atlantic burrowing crab Chasmagnathus granulata on habitat use and foraging activity of migratory shorebirds. Estuaries 23, 208215.CrossRefGoogle Scholar
Botto, F., Valiela, I., Iribarne, O., Martinetto, P. and Alberti, J. (2005) Impact of burrowing crabs on C and N sources, control, and transformations in sediments and food webs of SW Atlantic estuaries. Marine Ecology Progress Series 293, 155164.Google Scholar
Brenchley, G.A. and Carlton, J.T. (1983) Competitive displacement of native mud snail by introduced periwinkle in the New England intertidal zone. Biological Bulletin. Marine Biological Laboratory, Woods Hole 165, 543558.Google Scholar
Carver, R.E. (1971) Procedures in sedimentary petrology. New York: Wiley Interscience.Google Scholar
Chalcraft, D.R. and Resetarits, W.J Jr. (2003) Predator identity and ecological impacts: functional redundancy or functional diversity? Ecology 84, 24072418.Google Scholar
Chesson, P. (2000) Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics 31, 343366.Google Scholar
Crisp, D.J. (1971) Energy flow measurements. In Holme, N.A. and McIntyre, A.D. (eds) Methods for study of marine benthos. Oxford: Blackwell Scientific Publications, pp. 197279 pp.Google Scholar
Daleo, P., Ribeiro, P. and Iribarne, O. (2003) The SW Atlantic burrowing crab Chasmagnathus granulatus Dana affects the distribution and survival of the fiddler crab Uca uruguayensis Nobili. Journal of Experimental Marine Biology and Ecology 291, 255267.Google Scholar
Escapa, M., Iribarne, O. and Navarro, D. (2004) Indirect effect of intertidal burrowing crabs on infaunal zonation patterns, tidal behavior and risk of mortality. Estuaries 27, 120131.CrossRefGoogle Scholar
Iribarne, O., Bortolus, A. and Botto, F. (1997) Between-habitats differences in burrow characteristics and trophic modes in the southwestern Atlantic burrowing crab Chasmagnathus granulata. Marine Ecology Progress Series 155, 132145.Google Scholar
Iribarne, O., Martinetto, P., Schwindt, E., Botto, F., Bortolus, A. and García Borboroglu, P. (2003) Evidences of habitat displacement between two common soft-bottom SW Atlantic intertidal crabs. Journal of Experimental Marine Biology and Ecology 296, 167182.Google Scholar
Iribarne, O., Bruschetti, M., Escapa, M., Bava, J., Botto, F., Gutierrez, J., Palomo, G., Delhey, K., Petracci, P. and Gagliardini, A. (2005) Small and large-scale effect of the SW Atlantic burrowing crab Chasmagnathus granulatus on habitat use by migratory shorebirds. Journal of Experimental Marine Biology and Ecology 315, 87101.Google Scholar
Johnson, K.H., Vogt, K.A., Clark, H.J., Schmitz, O.J. and Vogt, D.J. (1996) Biodiversity and the productivity and stability of ecosystems. Trends in Ecology and Evolution 11, 372377.Google Scholar
Kurihara, Y., Hosada, T. and Takeda, S. (1989) Factors affecting the burrowing behavior of Helice tridens (Grapsidae) and Macrophtalmus japonicus (Ocypodidae) in an estuary of northeast Japan. Marine Biology 101, 153157.CrossRefGoogle Scholar
Lawton, J.H. (2000) Community ecology in a changing world. In Kinne, O. (ed.) Excellence in ecology (11). Oldernof/Luhe, Germany: Ecology Institute.Google Scholar
Luppi, T.A., Spivak, E.D., Anger, K. and Valero, J.L. (2002) Patterns and processes of Chasmagnathus granulata and Cyrtograpsus angulatus (Brachyura: Grapsidae) recruitment in Mar Chiquita coastal lagoon, Argentina. Estuarine, Coastal and Shelf Science 55, 287297.Google Scholar
Martinetto, P., Iribarne, O. and Palomo, G. (2005) Effect of fish predation on intertidal benthic fauna is modified by crab bioturbation. Journal of Experimental Marine Biology and Ecology 318, 7184.Google Scholar
Martinetto, P., Ribeiro, P. and Iribarne, O. (2007a) Changes in distribution and abundance of juvenile fishes in intertidal soft sediment areas dominated by the burrowing crab Chasmagnathus granulatus. Marine and Freshwater Research 58, 194203.Google Scholar
Martinetto, P., Valiñas, M., Palomo, G. and Iribarne, O. (2007b) Negative interactions between two SW Atlantic intertidal crabs in soft-bottom habitat. Marine Biology 151, 14791490.Google Scholar
Murrell, D.J. and Law, R. (2003) Heteromyopia and spatial coexistence of similar competitors. Ecology Letters 6, 4859.CrossRefGoogle Scholar
Palomo, G., Botto, F., Navarro, D., Escapa, M. and Iribarne, O. (2003) The predator–prey interaction between migratory shorebirds and the polychaete Laeonereis acuta is modified by burrowing crabs. Journal of Experimental Marine Biology and Ecology 290, 211228.Google Scholar
Palomo, G., Martinetto, P. and Iribarne, O. (2004) Changes in the feeding behavior of the deposit feeder polychaete Laeonereis acuta on soft-sediments inhabited by burrowing crabs. Marine Biology 145, 657667.Google Scholar
Peterson, C.H. (1977) Competitive organization of the soft bottom macrobenthic communities of southern California lagoon. Marine Biology 43, 343359.Google Scholar
Peterson, C.H. (1991) Intertidal zonation of marine invertebrates in sand and mud. American Scientist 79, 236249.Google Scholar
Peterson, C.H. and Andre, S.V. (1980) An experimental analysis of interspecific competition among marine filter feeders in a soft-sediment environment. Ecology 61, 129139.CrossRefGoogle Scholar
Peterson, G., Craig, R.A. and Holling, C.S. (1998) Ecological resilience, biodiversity and scale. Ecosystems 1, 618.Google Scholar
Rosa, L.C. and Bemvenuti, C.E. (2005) Effects of the burrowing crab Chasmagnathus granulata (Dana) on meiofauna of estuarine intertidal habitats of Patos lagoon, Southern Brazil. Brazilian Archives of Biology and Technology 48, 267274.Google Scholar
Rosenfeld, J.S. (2002) Functional redundancy in ecology and conservation. Oikos 98, 156162.Google Scholar
Spivak, E.D., Anger, K., Luppi, T., Bas, C. and Ismael, D. (1994) Distribution and habitat preferences of two grapsid crab species in Mar Chiquita Lagoon (Province of Buenos Aires, Argentina). Helgoländer Meeresuntersuchungen 48, 5978.CrossRefGoogle Scholar
Spivak, E. (1997) Los crustáceos decápodos del Atlántico sudoccidental (25–55S): distribución y ciclos de vida. Investigaciones Marinas, Valparaíso 25, 6991.Google Scholar
Underwood, A.J. (1997) Experiments in ecology: their logical design and interpretation using analysis of variance. New York: Cambridge University Press.Google Scholar
Walker, B.H. (1992) Biodiversity and ecological redundancy. Conservation Biology 6, 1823.Google Scholar
Walker, B.H. (1995) Conserving biological diversity through ecosystem resilience. Conservation Biology 9, 747752.Google Scholar
Wellnitz, T. and Poff, N.L. (2001) Functional redundancy in heterogeneous environments: implications for conservation. Ecology Letters 4, 177179.Google Scholar
Wilson, W.H. (1980) A laboratory investigation of the effect of a terebellid polychaete on the survivorship of nereid polychaete larvae. Journal of Experimental Marine Biology and Ecology 46, 7380.Google Scholar
Wilson, W.H. (1991) Competition and predation in marine soft sediment communities. Annual Review in Ecology and Systematics 21, 221241.Google Scholar
Zar, J.H. (1999) Biostatistical analysis. Upper Saddle River: NJ: Prentice-Hall.Google Scholar