Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-22T17:04:54.225Z Has data issue: false hasContentIssue false

Seasonal Changes in Dispersion Within an Aggregation of the Anemone, Actinia Equina, With a Reappraisal of the Role of Intraspecific Aggression

Published online by Cambridge University Press:  11 May 2009

R. C. Brace
Affiliation:
Department of Zoology, University of Nottingham, University Park, Nottingham NG7 2RD
D. L. J. Quicke
Affiliation:
Department of Zoology, University of Nottingham, University Park, Nottingham NG7 2RD

Extract

Although intraspecific aggression in the anemone, Actinia equina L. has been behaviourally well characterized in laboratory-based studies (Bonnin, 1964; Brace & Pavey, 1978; Brace, Pavey & Quicke, 1979), both its incidence and functional role on the shore have remained obscure. Since A. equina broods young, which are produced asexually (Carter & Thorp, 1979; Gashout & Ormond, 1979; Orr, Thorpe & Carter, 1982) and which appear best suited to local dispersal, we have previously postulated that aggression is likely to be primarily directed towards maintaining ‘territorial’ space for settling syngeneic offspring (Quicke & Brace, 1983; Brace & Quicke, 1985). As such, this postulated role is functionally analogous to that provided by aggression in the clonally reproducing anemone, Anthopleura elegantissima Brandt, in which it serves to maintain the integrity of clonal boundaries (Francis, 1973, 1976), thereby presumably also facilitating the competitive expansion of those boundaries. Work by Ayre (1983) on the Australian anemone, Actinia tenebrosa Farquhar appears to support this contention, for both local settlement and genotypic clustering were detected within aggregations.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ayre, D. J., 1982. Inter-genotype aggression in the solitary sea anemone Actinia tenebrosa. Marine Biology, 68 199205.CrossRefGoogle Scholar
Ayre, D. J., 1983. The effects of asexual reproduction and inter-genotypic aggression on the genotypic structure of populations of the sea anemone Actinia tenebrosa. Oecologia, 57 158165.CrossRefGoogle ScholarPubMed
Beninger, P. G., 1984. Seasonal variations of the major lipid classes in relation to the reproductive activity of two species of clams raised in a common habitat: Tapes decussatus L. (Jeffreys, 1963) and T. philippinarium (Adams & Reeve, 1850). Journal of Experimental Marine Biology and Ecology, 79 7990.CrossRefGoogle Scholar
Bonnin, J. P., 1964. Recherches sur la ‘réaction d'aggression’, et sur la fonctionnement des acrorrhages d'Actinia equina L. Bulletin biologique de la France et de la Belgique, 1 225250.Google Scholar
Brace, R. C. & Pavey, J., 1978. Size-dependent dominance hierarchy in the anemone Actinia equina. Nature, London, 273 752753.CrossRefGoogle Scholar
Brace, R. C., Pavey, J. & Quicke, D. L. J., 1979. Intraspecific aggression in the colour morphs of the anemone Actinia equina: the ‘convention’ governing dominance ranking. Animal Behaviour, 27 553561.CrossRefGoogle Scholar
Brace, R. C. & Quicke, D. L. J., 1985. Further analysis of individual spacing within aggregations of the anemone, Actinia equina. Journal of the Marine Biological Association of the United Kingdom, 65 3553.CrossRefGoogle Scholar
Brace, R. C. & Quicke, D. L. J., 1986. Dynamics of colonization by the beadlet anemone, Actinia equina. Journal of the Marine Biological Association of the United Kingdom, 66 2147.CrossRefGoogle Scholar
Carter, M. A. & Thorpe, C. H., 1979. The reproduction of Actinia equina L. var. mesembryanthemum. Journal of the Marine Biological Association of the United Kingdom, 59 9891001.CrossRefGoogle Scholar
Clark, P. J. & Evans, F. C., 1954. Distance to nearest neighbour as a measure of spatial relationships in populations. Ecology, 35, 445—453.CrossRefGoogle Scholar
Connell, J. H., 1961. Effects of competition, predation by Thais lapillus, and other factors on natural populations of the barnacle Balanus balanoides. Ecological Monographs, 31 61104.CrossRefGoogle Scholar
Dalby, D. H., Cowell, E. B., Syratt, W. J. & Crowthers, J. H., 1978. An exposure scale for marine shores in western Norway. Journal of the Marine Biological Association of the United Kingdom, 58 975996.CrossRefGoogle Scholar
Dayton, P. K., 1971. Competition, disturbance and community organization: the provision and subsequent utilization of space in a rocky intertidal community. Ecological Monographs, 41 351389.CrossRefGoogle Scholar
Donoghue, A. M., Quicke, D. L. J. & Brace, R. C., 1985. Biochemical-genetic and acrorhagial characteristics of pedal disc colour phenotypes of Actinia equina. Journal of the Marine Biological Association of the United Kingdom, 65 2133.CrossRefGoogle Scholar
Francis, L., 1973. Clone specific segregation in the sea anemone Anthopleura elegantissima. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 144 6472.CrossRefGoogle ScholarPubMed
Francis, L., 1976. Social organization within clones of the sea anemone Anthopleura elegantissima. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 150 361376.CrossRefGoogle ScholarPubMed
Gashout, S. E. & Ormond, R. F. G., 1979. Evidence for parthenogenetic reproduction in the sea anemone Actinia equina L. Journal of the Marine Biological Association of the United Kingdom, 59 975987.CrossRefGoogle Scholar
Giese, A. C., 1959. Comparative physiology: annual reproductive cycles of marine invertebrates. Annual Review of Physiology, 21 547576.CrossRefGoogle ScholarPubMed
Giese, A. C., 1960. Lipids in the economy of marine invertebrates. Physiological Reviews, 46 244298.CrossRefGoogle Scholar
Jennison, B. L., 1979. Annual fluctuations of lipid levels in the sea anemone Anthopleura elegantissima (Brandt, 1835). Journal of Experimental Marine Biology and Ecology, 39 211221.Google Scholar
Koehl, M. A. R., 1976. Mechanical design in sea anemones. In Coelenterate Ecology and Behaviour (ed. Mackie, G. O.), pp. 2331. New York: Plenum Press.CrossRefGoogle Scholar
Mather, K., 1964. Statistical Analysis in Biology, 5th edition. London: Methuen & Co. Ltd.Google Scholar
Orr, J., Thorpe, J. P. & Carter, M. A., 1982. Biochemical genetic confirmation of the asexual reproduction of brooded offspring in the sea anemone Actinia equina. Marine Ecology – Progress Series, 7 227229.CrossRefGoogle Scholar
Ottaway, J. R., 1973. Some effects of temperature, desiccation and light on the intertidal anemone Actinia tenebrosa Farquhar (Cnidaria: Anthozoa). Australian Journal of Marine and Freshwater Research, 24 103126.CrossRefGoogle Scholar
Ottaway, J. R., 1978. Population ecology of the intertidal anemone Actinia tenebrosa. I. Pedal locomotion and intraspecific aggression. Australian Journal of Marine and Freshwater Research, 29, 787802.CrossRefGoogle Scholar
Ottaway, J. R., 1979. Population ecology of the intertidal anemone Actinia tenebrosa. III. Dynamics and environmental factors. Australian Journal of Marine and Freshwater Research, 30 4162.CrossRefGoogle Scholar
Ottaway, J. R., 1980. Population ecology of the intertidal anemone Actinia tenebrosa. IV. Growth rates and longevities. Australian Journal of Marine and Freshwater Research, 31 385395.CrossRefGoogle Scholar
Ottaway, J. R. & Thomas, I. M., 1971. Movement and zonation of the intertidal anemone Actinia tenebrosa Farqu. (Ćnidaria: Anthozoa) under experimental conditions. Australian Journal of Marine and Freshwater Research, 22 6378.CrossRefGoogle Scholar
Quicke, D. L. J. & Brace, R. C., 1983. Phenotypic and genotypic spacing within an aggregation of the anemone, Actinia equina. Journal of the Marine Biological Association of the United Kingdom, 63 493515.CrossRefGoogle Scholar
Quicke, D. L. J. & Brace, R. C., 1984. Evidence for the existence of a third, ecologically distinct morphof the anemone, Actinia equina. Journal of the Marine Biological Association of the United Kingdom, 64 531534.CrossRefGoogle Scholar
Quicke, D. L. J., Donoghue, A. M. & Brace, R. C., 1983. Biochemical-genetic and ecological evidence that red/brown individuals of the anemone Actinia equina comprise two morphs in Britain. Marine Biology, 77 2937.CrossRefGoogle Scholar
Quicke, D. L. J., Donoghue, A. M., Keeling, T. F. & Brace, R. C., 1985. Littoral distributions and evidence for differential post-settlement selection of the morphs of Actinia equina. Journal of the Marine Biological Association of the United Kingdom, 65 120.CrossRefGoogle Scholar
Rees, T. D., 1984. The Population Ecology and Behaviour of Actinia equina. Ph.D. Thesis, University of Nottingham.Google Scholar
Rostron, M. A. & Rostron, J., 1978. Fecundity and reproductive ecology of a natural population of Actinia equina L. (Cnidaria: Anthozoa). Journal of Experimental Marine Biology and Ecology, 33 251259.CrossRefGoogle Scholar
Sebens, K. P., 1981 a. Reproductive ecology of the intertidal sea anemones Anthopleura xanthogrammica (Brandt) and A. elegantissima (Brandt): body size, habitat and sexual reproduction. Journal of Experimental Marine Biology and Ecology, 54 225250.CrossRefGoogle Scholar
Sebens, K. P., 1981 b. Recruitment in a sea anemone population: juvenile substrate becomes adult prey. Science, New York, 213 785787.CrossRefGoogle Scholar
Sebens, K. P., 1984. Agonistic behaviour in the intertidal sea anemone Anthopleura xanthogrammica. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 166 457472.CrossRefGoogle Scholar
Weiss, P. W., 1981. Spatial distribution and dynamics of populations of the introduced annual Emex australis in south-eastern Australia. Journal of Applied Ecology, 18 849864.CrossRefGoogle Scholar