Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-22T17:02:49.770Z Has data issue: false hasContentIssue false

The role of L-glutamate in neuromuscular transmission in some molluscs

Published online by Cambridge University Press:  11 May 2009

Q. Bone
Affiliation:
The Laboratory, Marine Biological Association, Citadel Hill, Plymouth
J. V. Howarth
Affiliation:
The Laboratory, Marine Biological Association, Citadel Hill, Plymouth

Extract

L-glutamate is shown to have excitatory effects on muscles of the lamellibranch, Pecten and of several cephalopods. These effects are reversibly blocked by known glutamate antagonists. In Pecten intracellular electrical recording revealed a similarity between the effects of topically applied glutamate and nerve stimulation.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Carew, T. J., Pinsker, H., Rubinson, K. & Kandel, E. R., 1974. Physiological and biochemical properties of neuromuscular transmission between identified motoneurons and gill muscle in Aplysia. Journal of Neurophysiology, 37, 10201040.CrossRefGoogle ScholarPubMed
Davies, J. & Watkins, J. C., 1979. Selective antagonism of amino acid-induced and synaptic excitation in the cat spinal cord. Journal of Physiology, 297, 621635.CrossRefGoogle ScholarPubMed
Dudel, J., 1975. Potentiation and de-sensitization after glutamate induced post-synaptic currents at the crayfish neuromuscular junction. Pflügers Archiv, 356, 317327.CrossRefGoogle Scholar
Evans, R. H., Francis, A. A., Hunt, K., Oakes, D. J. & Watkins, J. C., 1979. Antagonism of excitatory amino-acid induced responses and of synaptic excitation in the isolated spinal cord of the frog. British Journal of Pharmacology, 67, 591603.CrossRefGoogle ScholarPubMed
Florey, E., 1969. Ultrastructure and function of cephalopod chromatophores. American Zoologist, 9, 429442CrossRefGoogle ScholarPubMed
Johnson, J. L., 1978. The excitant amino acids glutamic and aspartic acid as transmitter candi-dates in the vertebrate central nervous system. Progress in Neurobiology, 10, 155202.CrossRefGoogle Scholar
Kahr, H., 1959. Zur endokrinen Steuerung der Melanophoren-Reaktion bei Octopus vulgaris. Zeitschrift für vergleichende Physiologie, 41, 435448.CrossRefGoogle Scholar
Kerkut, G. A. & Walker, R. J., 1975. Nervous system, eye and statocyst. In Pulmonates, vol. 1 (ed. V., Fretter and J., Peake), pp. 165244. Academic Press.Google Scholar
Lowagie, C. & Gerschenfeld, H. M., 1974. Glutamate antagonists at a crayfish neuromuscular junction. Nature, London, 248, 533535.CrossRefGoogle Scholar
Mellon, D. Jr., 1968. Junctional physiology and motor nerve distribution in the fast adductor muscle of the scallop. Science, New York, 160, 10181020.CrossRefGoogle ScholarPubMed
Millman, B. M. & Bennett, P. M., 1976. Structure of the cross-striated adductor muscle of the scallop. Journal of Molecular Biology, 103, 439467.CrossRefGoogle ScholarPubMed
Takeuchi, A. & Takeuchi, N., 1964. The effect on crayfish muscle of ionophoretically applied glutamate. Journal of Physiology, 170, 296317.CrossRefGoogle Scholar
Taraskevich, P. S., Gibbs, D., Schmued, L. & Orkand, R. K., 1977. Excitatory effects of cholinergic, adrenergic and glutaminergic agonists on a buccal muscle of Aplysia. Journal of Neurobiology, 8, 325335.CrossRefGoogle ScholarPubMed
Twarog, B. M., 1954. Effects of acetylcholine and 5-hydroxytryptamine on the contraction of a molluscan smooth muscle. Journal of Physiology, 152, 236242.CrossRefGoogle Scholar