Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-22T09:47:13.577Z Has data issue: false hasContentIssue false

Respiration rates and biovolumes of common benthic Foraminifera (Protozoa)

Published online by Cambridge University Press:  11 May 2009

Fiona Hannah
Affiliation:
University Marine Biological Station, Millport, Isle of Cumbrae, Scotland, KA28 OEG
Rew Rogerson
Affiliation:
University Marine Biological Station, Millport, Isle of Cumbrae, Scotland, KA28 OEG
Johanna Laybourn-Parry
Affiliation:
Department of Zoology, La Trobe University, Bundoora, Melbourne, Victoria 3083, Australia

Abstract

The respiration rates of five genera of benthic Foraminifera were determined by Cartesian diver microrespirometry. Across all genera studied, the rate averaged 11·3×10−3 μl O2 individual−1 h−1 at 10°C. Estimates of foraminiferal mean biovolumes ranged from 0·66 to 6·54×106μm3, giving an overall mean volume-specific respiration rate of 7·36 × 10−9 μl O2 h−1 μm−3. For non-symbiont-bearing Foraminifera, in general, volume-specific rates (log μl O2 h−1 μm3) are best described by the equation, −0·98 × (log cell biovolume, μm3)−2·01. The respiration results show that these benthic Foraminifera respire some ten times more rapidly than naked amoebae of equivalent size. The combination of high respiratory rates and the often large standing stocks of Foraminifera encountered, suggests that these organisms may contribute significantly to total microbial benthic respiration.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altenbach, A.V., 1987. The measurement of organic carbon in Foraminifera. Journal of Foraminiferal Research, 17, 106110.CrossRefGoogle Scholar
Baldock, B., Baker, J.H. & Sleigh, M.A., 1980. Laboratory growth rates of six species of freshwater Gymnamoebia. Oecologia, 47, 156159.CrossRefGoogle ScholarPubMed
Baldock, B.M., Rogerson, A. & Berger, J., 1982. Further studies on respiratory rates of freshwater gymnamoebia. Microbial Ecology, 8, 5560.CrossRefGoogle ScholarPubMed
Bernhard, J.M., 1993. Experimental and field evidence of Antarctic foraminiferal tolerance to anoxia and hydrogen sulphide. Marine Micropaleontology, 20, 203213.CrossRefGoogle Scholar
Boltovskoy, E. & Wright, R., 1976. Recent Foraminifera. The Hague: Junk Publishers.CrossRefGoogle Scholar
Bradshaw, J.S., 1961. Laboratory experiments on the ecology of Foraminifera. Contributions from the Cushman Foundation for Foraminiferal Research, 12, 87106.Google Scholar
Buzas, M.A., 1977. Vertical distribution of Foraminifera in the Indian River, Florida. Journal of Foraminiferal Research, 7, 234237.CrossRefGoogle Scholar
Caron, D.A., Goldman, J.C. & Fenchel, T., 1990. Protozoa respiration and metabolism. In Ecology of marine Protozoa (ed. G.M., Capriulo), pp 307322. New York: Oxford University Press.Google Scholar
Claff, C.L. & Tahmisian, T.N., 1949. Cartesian diver technique. Journal of Biological Chemistry, 179, 577583.CrossRefGoogle ScholarPubMed
Corliss, B.H., 1985. Microhabitats of benthic Foraminifera within deep-sea sediments. Nature, London, 314, 435438.CrossRefGoogle Scholar
Crawford, D.W., 1992. Metabolic cost of motility in planktonic protists: theoretical considerations on size scaling and swimming speed. Microbial Ecology, 24, 110.CrossRefGoogle ScholarPubMed
Crawford, D.W., Rogerson, A. & Laybourn-Parry, J., 1994. Respiration of the marine amoeba Trichosphaerium sieboldi determined by 14C labelling and Cartesian diver methods. Marine Ecology Progress Series, in press.CrossRefGoogle Scholar
Ellison, R.L., 1984. Foraminifera and meiofauna on an intertidal mudflat, Cornwall, England: populations; respiration and secondary production; and energy budget. Hydrobiologia, 109, 131148.CrossRefGoogle Scholar
Fenchel, T., 1987. Ecology of Protozoa: the biology of free-living phagotrophic protists. Madison, Wisconsin: Science Technical Publishers.Google Scholar
Fenchel, T. & Finlay, B.J., 1983. Respiration rates in heterotrophic, free-living Protozoa. Microbial Ecology, 9, 99122.CrossRefGoogle ScholarPubMed
Gerlach, S.A., Hahn, A.E. & Schrage, M., 1985. Size spectra of benthic biomass and metabolism. Marine Ecology Progress Series, 26, 161173.CrossRefGoogle Scholar
Gooday, A.J., 1986. Meiofaunal foraminiferans from the bathyal Porcupine Seabight (north-east Atlantic): size structure, standing stock, taxonomic composition, species diversity and vertical distribution in the sediment. Deep-Sea Research, 33, 13451373.CrossRefGoogle Scholar
Hemmingsen, A.M., 1960. Energy metabolism as related to body size and respiratory surfaces, and its evolution. Report of the Steno Memorial Hospital and the Nordisk Insulinlabatorium, Copenhagen, 9(2), 1110.Google Scholar
Holter, H. & Zeuthen, E., 1948. Metabolism and reduced weight in starving Chaos chaos. Comptes Rendus des Travaux du Laboratoire de Carlsberg, Serie Chimique, 26, 277296.Google Scholar
Klekowski, R.Z., 1981. Ecology of aquatic organisms. 3. Animals. Size dependence of metabolism on protozoans. Verhandlungen der International Vereinigung für Theoretische und Angewandte Limnologie, 21, 14981502.Google Scholar
Laybourn-Parry, J., 1984. A functional biology of free-living Protozoa. London: Croom Helm.Google Scholar
Lee, J.J., 1993. ‘On a piece of chalk’ - updated. Journal of Eukaryotic Microbiology, 40, 395410.CrossRefGoogle Scholar
Lee, J.J. & Muller, W.A., 1973. Trophic dynamics and niches of salt marsh Foraminifera. American Zoologist, 13, 215223.CrossRefGoogle Scholar
Linke, P., 1992. Metabolic adaptations of deep-sea benthic Foraminifera to seasonally varying food input. Marine Ecology Progress Series, 81, 5163.CrossRefGoogle Scholar
Lövlie, A., 1963. Growth in mass and respiration rate during the cell cycle of Tetrahymena pyriformis. Comptes Rendus des Travaux du Laboratoire de Carlsberg, Copenhague, 33, 377413.Google Scholar
Moodley, L. & Hess, C., 1992. Tolerance of infaunal benthic Foraminifera for low and high oxygen concentrations. Biological Bulletin. Marine Biological Laboratory, Woods Hole, 183, 9498.CrossRefGoogle ScholarPubMed
Murray, J.W., 1973. Distribution and ecology of living benthic foraminiferids. London: Heinemann Educational Books.Google Scholar
Murray, J.W., 1991. Ecology and palaecology of benthic Foraminifera. New York: Longman Scientific and Technical.Google Scholar
Murray, J.W., 1992. Distribution and population dynamics of benthic Foraminifera from the southern North Sea. Journal of Foraminiferal Research, 22, 114128.CrossRefGoogle Scholar
Page, F.C., 1988. A new key to freshwater and soil gymnamoebae. Ambleside: Freshwater Biological Association.Google Scholar
Phillipson, J., 1981. Bioenergetic options and phylogeny. In Physiological biology: an evolutionary approach to resource use (ed. C.R., Townsend and P., Calow), pp. 2045. Oxford: Blackwell Scientific Publications.Google Scholar
Rogerson, A., 1981. The ecological energetics of Amoeba proteus (Protozoa). Hydrobiologia, 85, 117128.CrossRefGoogle Scholar
Rogerson, A., Butler, H.G. & Thomason, J.C., 1994. Estimation of amoeba cell volume from nuclear diameter and its application to studies in protozoan ecology. Hydrobiologia, in press.CrossRefGoogle Scholar
Scholander, P.F., Claff, C.L. & Sveinsson, S.L., 1952. Respiratory studies of single cells. I. Methods. Biological Bulletin. Marine Biological Laboratory, Woods Hole, 102, 157177.CrossRefGoogle Scholar
Schwab, D. & Hofer, H.W., 1979. Metabolism in the protozoan Allogromia laticollaris Arnold. Zeitschrifr für Mikroskopisch Anatomische Forschung, 93, 715727.Google Scholar
Telek, G. & Marshall, N., 1974. Using a CHN analyser to reduce carbonate interference in particulate organic carbon analyses. Marine Biology, 24, 219221.CrossRefGoogle Scholar
Turley, C.M., Newell, R.C. & Robins, D.B., 1986. Survival strategies of two small marine ciliates and their role in regulating bacterial community structure under experimental conditions. Marine Ecology Progress Series, 33, 5970.CrossRefGoogle Scholar
Wefer, G.V. & Lutze, G.F., 1976. Benthic Foraminifera biomass production in the western Baltic. Kieler Meeresforschungen, 3, (supplement), 7681.Google Scholar
Widbom, B., 1984. Determination of average individual dry weights and ash-free dry weights in different sieve fractions of marine meiofauna. Marine Biology, 4, 101108.CrossRefGoogle Scholar
Zeuthen, E., 1943. A Cartesian diver micro-respirometer with a gas volume of 0·1 μl. Respiration measurements with an experimental error of 2·10−5 μl. Comptes Rendus des Travaux du Laboratoire, Carlsberg, Serie Chimique, 24, 479518.Google Scholar
Zeuthen, E., 1953. Oxygen uptake as related to body size in organisms. Quarterly Review of Biology, 28, 112.CrossRefGoogle ScholarPubMed