Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T00:13:27.889Z Has data issue: false hasContentIssue false

Relationship between the invasive slipper limpet Crepidula fornicata and benthic megafauna structure and diversity, in Arcachon Bay

Published online by Cambridge University Press:  04 October 2017

Xavier de Montaudouin*
Affiliation:
University Bordeaux, UMR EPOC 5805, CNRS, 2 rue du Pr Jolyet – F-33120 Arcachon, France
Hugues Blanchet
Affiliation:
University Bordeaux, UMR EPOC 5805, CNRS, 2 rue du Pr Jolyet – F-33120 Arcachon, France
Bettina Hippert
Affiliation:
University Bordeaux, UMR EPOC 5805, CNRS, 2 rue du Pr Jolyet – F-33120 Arcachon, France
*
Correspondence should be addressed to: X. de Montaudouin, University Bordeaux, UMR EPOC 5805, CNRS, 2 rue du Pr Jolyet – F-33120 Arcachon, France email: [email protected]

Abstract

The slipper limpet Crepidula fornicata ranks among the main invasive species on French coasts and is known to cause ecological impacts on food web structure and nutrient cycling. This study investigated the effect of C. fornicata on different components of benthic megafauna diversity (species composition, α-, β- and γ-diversity). In Arcachon Bay (France), C. fornicata was present in 58% of the 221 sampling stations. Crepidula fornicata was particularly abundant in four of the main benthic megafauna assemblages, suggesting a non-random distribution of its population. The mean number of megafauna species per station (α-diversity) was 11 with C. fornicata vs six without. Conversely, community similarity among stations (β-diversity) was higher when C. fornicata biomass increased. Opposing α- and β-diversity trends in the presence of C. fornicata explained the similarity of the global number of species (γ-diversity) between both situations (with and without C. fornicata). These results highlighted how this exotic engineer species acted on different types of diversity: the presence of C. fornicata increased the number of species per sample (α-diversity) but homogenized the benthic community (decreasing β-diversity) in comparison with stations where C. fornicata was absent. Crepidula fornicata stock in Arcachon Bay was also monitored and compared with 1999. The spread of C. fornicata between 1999 and 2011 has been limited with a 318 t stock which was not statistically different than the previous estimate performed in 1999. However, the mean length of C. fornicata collected in 2011 was significantly smaller, mainly due to a higher proportion of small individuals.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, M.J., Crist, T.O., Chase, J.M., Vellend, M., Inouye, B.D., Freestone, A.L., Sanders, N.J., Cornell, H.V., Comita, L.S., Davies, K.F., Harrison, S.P., Fraft, N.J.B., Stegen, J.C. and Swenson, N.G. (2011) Navigating the multiple meanings of β-diversity: a roadmap for the practicing ecologist. Ecology Letters 14, 1928.Google Scholar
Anderson, M.J., Gorley, R.N. and Clarke, K.R. (2008) PERMANOVA+ for PRIMER: guide to software and statistical methods. Plymouth: PRIMER-E.Google Scholar
Auby, I. (1991) Contribution à l’étude écologique des herbiers de Zostera noltii dans le Bassin d'Arcachon: dynamique, production et dégradation, macrofaune associée. PhD thesis, University of Bordeaux 1, Bordeaux, France.Google Scholar
Auby, I. and Labourg, P.-J. (1996) Seasonal dynamics of Zostera noltii Hornem in the Bay of Arcachon (France). Journal of Sea Research 35, 269277.Google Scholar
Bachelet, G., Cazaux, C., Gantès, H. and Labourg, P.-J. (1980) Contribution à l’étude de la faune marine de la région d'Arcachon, IX. Bulletin du Centre d'Etudes et de Recherches scientifiques de Biarritz 13, 4564.Google Scholar
Bachelet, G. and Dauvin, J.-C. (1993) Distribution quantitative de la macrofaune benthique des sables intertidaux du Bassin d'Arcachon. Oceanologica Acta 16, 8397.Google Scholar
Bachelet, G., de Montaudouin, X. and Dauvin, J.-C. (1996) The quantitative distribution of subtidal macrozoobenthic assemblages in Arcachon Bay in relation to environmental factors: a multivariate analysis. Estuarine, Coastal and Shelf Science 42, 371391.Google Scholar
Blanchard, M. (1997) Spread of the slipper limpet Crepidula fornicata (L. 1758) in Europe. Current state and consequences. Scientia Marina 61(Suppl. 2), 109118.Google Scholar
Blanchard, M. (2009) Recent expansion of the slipper limpet population (Crepidula fornicata) in the Bay of Mont-Saint-Michel (Western Channel, France). Aquatic Living Resource 22, 1119.Google Scholar
Blanchet, H., de Montaudouin, X., Chardy, P. and Bachelet, G. (2005) Structuring factors and recent changes in subtidal macrozoobenthic communities of a coastal lagoon, Arcachon Bay (France). Estuarine, Coastal and Shelf Science 64, 561576.Google Scholar
Blanchet, H., de Montaudouin, X., Lucas, A. and Chardy, P. (2004) Heterogeneity of macrozoobenthic assemblages within a Zostera noltii seagrass bed: diversity, abundance, biomass and structuring factors. Estuarine, Coastal and Shelf Science 61, 111123.Google Scholar
Bouchet, J.-M. (1995) Bassin d'Arcachon: carte de l'environnement marin. Saint-Herblain: AGP Cartographie.Google Scholar
Boudouresque, C.-F. and Verlaque, M. (2002) Biological pollution in the Mediterranean Sea: invasive versus introduced macrophytes. Marine Pollution Bulletin 44, 3238.Google Scholar
Carlton, J.T. (1999) Molluscan invasions in marine and estuarine communities. Malacologia 41, 439454.Google Scholar
Chauvaud, L. (1998) La coquille Saint-Jacques en Rade de Brest: un modèle biologique d’étude des réponses de la faune benthique aux fluctuations de l'environnement. PhD thesis, University of Bretagne Occidentale, France.Google Scholar
Chauvaud, L., Jean, F., Ragueneau, O. and Thouzeau, G. (2000) Long-term variation of the Bay of Brest ecosystem: benthic-pelagic coupling revisited. Marine Ecology Progress Series 200, 3548.Google Scholar
Clarke, K.R. and Gorley, R.N. (2006) PRIMER v6: user manual/tutorial. Plymouth: PRIMER-E.Google Scholar
Cochran, W.G. (1977) Sampling techniques, 3rd edition. New York, NY: John Wiley & Sons.Google Scholar
Collignon, J. (1991) Ecologie et Biologie Marine – Introduction à l'Halieutique. Paris: Masson.Google Scholar
David, V. (2016) La diversité planctonique, un outil de compréhension de l'impact du changement global sur les services prodigués par les écosystèmes côtiers. Montaigne: HDR, University of Bordeaux.Google Scholar
David, V., Ryckaert, M., Karpytchev, M., Bacher, C., Arnaudeau, V., Vidal, N., Maurer, D. and Niquil, N. (2012) Spatial and long-term changes in the functional and structural phytoplankton communities along the French Atlantic coast. Estuarine, Coastal and Shelf Science 108, 3751.Google Scholar
de Montaudouin, X., Audemard, C. and Labourg, P.-J. (1999) Does the slipper limpet (Crepidula fornicata, L.) impair oyster growth and zoobenthos biodiversity? A revisited hypothesis. Journal of Experimental Marine Biology and Ecology 235, 105124.Google Scholar
de Montaudouin, X. and Gouillieux, B. (2012) Reconstruction de la jetée de la Chapelle (33-Arcachon): état initial des communautés mégabenthiques. Arcachon: Université Bordeaux 1, UMR EPOC, Artelia, 18 pp.Google Scholar
de Montaudouin, X., Labarraque, D., Giraud, K. and Bachelet, G. (2001) Why does the introduced gastropod Crepidula fornicata fail to invade Arcachon Bay (France)? Journal of the Marine Biological Association of the United Kingdom 81, 97104.Google Scholar
de Montaudouin, X., Lucia, M., Binias, C., Lassudrie, M., Baudrimont, M., Legeay, A., Raymond, N., Jude-Lemeilleur, F., Lambert, C., Le Goïc, N., Garabétian, F., Gonzalez, P., Hégaret, H., Lassus, P., Mehdioub, W., Bourasseau, L., Daffe, G., Paul-Pont, I., Plus, M., Do, V.T., Meisterhans, G., Mesmer-Dudons, N., Caill-Milly, N., Sanchez, F. and Soudant, P. (2016) Why is Asari (=Manila) clam Ruditapes philippinarum fitness poor in Arcachon Bay: a meta-analysis to answer? Estuarine, Coastal and Shelf Science 179, 226235.Google Scholar
de Montaudouin, X., Occelli, N., Gouillieux, B. and Lavesque, N. (2012) Etude de la faune benthique de 5 sites du bassin d'Arcachon. Arcachon: UMR 5805, Station Marine d'Arcachon – Syndicat Intercommunal du Bassin d'Arcachon, pp. 122.Google Scholar
de Montaudouin, X. and Sauriau, P.-G. (1999) The proliferating Gastropoda Crepidula fornicata may stimulate macrozoobenthic diversity. Journal of the Marine Biological Association of the United Kingdom 79, 10691077.Google Scholar
de Montaudouin, X., Vébret, B. and Lavesque, N. (2011) Rechargement et restauration des plages du Pyla sur Mer : impact sur les peuplements benthiques (année 8). Arcachon: UMR 5805, Station Marine d'Arcachon – Syndicat Intercommunal du Bassin d'Arcachon, pp. 145.Google Scholar
Do, V.T., Blanchet, H., de Montaudouin, X. and Lavesque, N. (2013) Limited consequences of seagrass decline on benthic macrofauna and associated biotic indicators. Estuaries and Coasts 36, 795807.Google Scholar
Ellingsen, K. (2001) Biodiversity of a continental shelf soft-sediment macrobenthos community. Marine Ecology Progress Series 218, 115.Google Scholar
Fridley, J.D., Stachowicz, J.J., Naeem, S., Sax, D.F., Seabloom, E.W., Smith, M.D., Stohlgren, T.J., Tilman, D. and Von Holle, B. (2007) The invasion paradox: reconciling pattern and process in species invasions. Ecology 88, 317.Google Scholar
Gassiat, L. (1989) Hydrodynamique et évolution sédimentaire d'un système lagune-flèche littorale. Le Bassin d'Arcachon et la flèche du Cap Ferret. PhD thesis, University Bordeaux 1, Bordeaux, France.Google Scholar
Gofas, S. and Zenetos, A. (2003) Exotic molluscs in the Mediterranean basin: current status and perspectives. Oceanography and Marine Biology Annual Review 41, 237277.Google Scholar
Gotelli, N.J. and Colwell, R.K. (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters 4, 379391.Google Scholar
Gray, J.S. (2000) The measurement of marine species diversity, with an application to the benthic fauna of the Norwegian continental shelf. Journal of Experimental Marine Biology and Ecology 250, 2349.Google Scholar
Grosholz, E.D. (2002) Ecological and evolutionary consequences of coastal invasions. Trends in Ecology and Evolution 17, 2227.Google Scholar
Guérin, J.-P. (1970) Etude expérimentale de l’établissement d'un peuplement de substrat meuble à partir de larves méroplanctoniques. Cahiers de Biologie Marine 11, 167185.Google Scholar
Guérin, L. (2004) La crépidule en rade de Brest; un modèle d'espèce introduite proliférante, en réponse aux fluctuations de l'environnement. PhD thesis, University of Bretagne Occidentale, France.Google Scholar
Gurewitch, J. and Padilla, D.K. (2004) Are invasive species a major cause of extinction? Trends in Ecology and Evolution 19, 470474.Google Scholar
Jones, C.G., Lawton, J.H. and Shachak, M. (1994) Organisms as ecosystem engineers. Oikos 69, 373386.Google Scholar
Kochmann, J., Buschbaum, C., Volkenborn, N. and Reise, K. (2008) Shift from native mussels to alien oysters: differential effects of ecosystem engineers. Journal of Experimental Marine Biology and Ecology 364, 110.Google Scholar
Lejart, M. and Hily, C. (2011) Differential response of benthic macrofauna to the formation of novel oyster reefs (Crassostrea gigas, Thunberg) on soft and rocky substrate in the intertidal of the Bay of Brest, France. Journal of Sea Research 65, 8493.Google Scholar
Magurran, A.E. (2004) Measuring biological diversity. Oxford: Blackwell Science.Google Scholar
Markert, A., Wehrmann, A. and Kroncke, I. (2010) Recently established Crassostrea-reefs versus native Mytilus-beds: differences in ecosystem engineering affects the macrofaunal communities (Wadden Sea of Lower Saxony, southern German Bight). Biological Invasions 12, 1532.Google Scholar
Molnar, J.L., Gamboa, R.L., Revenga, C. and Spalding, M.D. (2008) Assessing the global threat of invasive species to marine biodiversity. Frontiers in Ecology and Environment 6, 18.Google Scholar
Moulin, F.Y., Guizen, K., Thouzeau, G., Chapalain, G., Mülleners, K. and Bourg, C. (2007) Impact of an invasive species, Crepidula fornicata, on the hydrodynamics and transport properties of the benthic boundary layer. Aquatic Living Resource 20, 1531.Google Scholar
Nunes, A.L., Katsanevakis, S., Zenetos, A. and Cardoso, A.C. (2014) Gateways to alien invasions in the European seas. Aquatic Invasions 9, 133144.Google Scholar
Olden, J.D. (2006) Biotic homogenization: a new research agenda for conservation biogeography. Journal of Biogeography 33, 20272039.Google Scholar
Olden, J.D. and Rooney, T.P. (2006) On defining and quantifying biotic homogenization. Global Ecology and Biogeography 15, 113120.Google Scholar
Pacciardi, L., De Biasi, A.M. and Piazzi, L. (2011) Effects of Caulerpa racemosa invasion on soft-bottom assemblages in the Western Mediterranean Sea. Biological Invasions 13, 26772690.Google Scholar
Plus, M., Dalloyau, S., Trut, G., Auby, I., de Montaudouin, X., Emery, E., Claire, N. and Viala, C. (2010) Long-term evolution (1988–2008) of Zostera spp. meadows in Arcachon Bay (Bay of Biscay). Estuarine, Coastal and Shelf Science 87, 357366.Google Scholar
Ragueneau, O., Chauvaud, L., Leynaert, A., Thouzeau, G., Paulet, Y.-M., Bonnet, S., Lorrain, A., Grall, J., Corvaisier, R., Le Hir, M., Jean, F. and Clavier, J. (2002) Direct evidence of a biologically active coastal silicate pump: ecological implications. Limnology and Oceanography 47, 18491854.Google Scholar
Rahel, F. (2010) Homogenization, differentiation, and the widespread alteration of fish faunas. American Fisheries Society Symposium 73, 311326.Google Scholar
Scourzic, T., Loyen, M., Fabre, E., Tessier, A., Dalias, N., Trut, G., Maurer, D. and Simonnet, B. (2011) Evaluation du stock d'huîtres sauvages et en élevage dans le Bassin d'Arcachon. Agence des Aires Marines Protégées & OCEANIDE, 70 pp.Google Scholar
Simberloff, D. (2011) How common are invasion-induced ecosystem impacts. Biological Invasions 13, 12551268.Google Scholar
Sousa, R., Gutiérrez, J.L. and Aldridge, D.C. (2009) Non-indigenous invasive bivalves as ecosystem engineers. Biological Invasions 11, 23672385.Google Scholar
Stiger-Pouvreau, V. and Thouzeau, G. (2015) Marine species introduced on the French channel–Atlantic coasts: a review of main biological invasions and impacts. Open Journal of Ecology 5, 227257.Google Scholar
Thieltges, D.W., Strasser, M. and Reise, K. (2003) The American slipper limpet Crepidula fornicata (L.) in the northern Wadden Sea 70 years after its introduction. Helgoland Marine Research 57, 2733.Google Scholar
Thieltges, D.W., Strasser, M. and Reise, K. (2006) How bad are invaders in coastal waters? The case of the American slipper limpet Crepidula fornicata in Western Europe. Biological Invasions 8, 16731680.Google Scholar
Troost, K. (2010) Causes and effects of a highly successful marine invasion: case-study of the introduced pacific oyster Crassostrea gigas in continental NW European estuaries. Journal of Sea Research 64, 145165.Google Scholar
Whittaker, R.H. (1972) Evolution and measurement of species diversity. Taxon 21, 213251.Google Scholar
Wiens, J.A. (1989) Spatial scaling in ecology. Functional Ecology 3, 385397.Google Scholar
Supplementary material: File

de Montaudouin et al supplementary material

de Montaudouin et al supplementary material 1

Download de Montaudouin et al supplementary material(File)
File 48.6 KB