Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-20T06:36:40.283Z Has data issue: false hasContentIssue false

Relationship between a drop of sardine and albacore catches and a relaxation of wind, tested by a Superposed Epoch Analysis

Published online by Cambridge University Press:  11 May 2009

Anne Littaye Mariett
Affiliation:
Ifremer, Centre de Nantes, Rue de l'lle d'Yeu, BP 1049, 44037 Nantes Cedex 01, France

Extract

Each summer, in the oceanic north-east Atlantic, a drop in the catch of albacore (Thunnus alalunga Bonnaterre, 1788) is observed for 8 to 10 days at the beginning of August. This temporary decrease of catch per unit effort (CPUE) is related to a relaxation of wind for 5 to 8 days during the previous 8 to 15 days. A similar and significant relationship is also observed in the Atlantic sardine (Sardina pilchardus Walbaum) fishery in a coastal area in the north-east of the Bay of Biscay (France). This indicates that a general ecological process is involved in this relationship between wind and CPUE of two pelagic fish, caught at the sea surface.

The timing of the response of the sardine and the albacore fishery to a relaxation of wind is interpreted in the light of a productivity model. The lack of wind-driven turbulent mixing provides a progressive decrease of the food organisms in the surface layer about 7 days after the wind event. Thus, fish disperse and become less susceptible to capture.

However, particular fertilization processes are involved at the continental shelf-break and the results of the association analysis were not found to be significant for the albacore fishery in this area.

The use of Superposed Epoch Analysis seems to provide a suitable method to analyse such a relationship with a daily time scale.

Comparison of the results of cross correlation analysis used in a previous work with a Superposed Epoch Analysis suggests that further considerations should be given to the use of the latter method infishery science.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aloncle, H. & Delaporte, F. 1977. Les operations de marquage de germons a 1'Istpm depuis 1968. International Commission for the Conservation of Atlantic Tunas. Recueil de Documents Scientifiques, VI (SCRS-76/21), 195201.Google Scholar
Azam, R.Fenchel, T.Field, J.G.Gray, J.S.Meyer-Reil, L.A. & Thinstad, F. 1983. The ecological role of water-column microbes in the sea. Marine Ecology Progress Series, 10, 257263.Google Scholar
Box, G.E.P. & JenkinsG.M., G.M., 1976. Time Series Analysis Forecastingand Control, revised edition. Holden Day.Google Scholar
Bradley, R.S.Diaz, H.F.Kiladis, G.N. & Eischeid, J.K. 1987. Enso signal in continental temperature and precipitation records. Nature, London, 327, 497501.Google Scholar
Cnexo, 1976. Etude Ecologiaue du site d'Erdeven.Hydrologie et Plancton. Brest. [Contrat CNEXO, 76 / 5270.]Google Scholar
Desbrosses, P. 1933. Etude de la sardine de la cote de Bretagne depuis Concarneau jusqu'a l'embouchure de la Loire. Revue des Travaux de VOffice des Peches Maritimes, 6, 3461.Google Scholar
Edgington, E.S. 1986. Randomization tests. In Encyclopedia of Statistical Sciences, vol. 7 (ed. Kotz, S. and Johnson, N.) pp. 530538. New-York: John Wiley.Google Scholar
Fasham, M.J.R. 1985. Flow analysis of materials in the marine euphotic zone. Canadian Bulletin of Fisheries and Aquatic Sciences, 213, 139162.Google Scholar
Harris, G.P. 1978. Photosynthesis, productivity and growth; the physiological ecology of phytoplankton. Ergebnisse der Limnologie, 10, 17.Google Scholar
Haurwitz, M.W. & BrierG.W., G.W., 1981. A critique of the Superposed Epoch Analysis method: its application to solar weather relations. Monthly Weather Review, 109, 20742079.Google Scholar
Holligan, P.M. & HarbourD.S., D.S., 1977. The vertical distribution and succession of phytoplankton in the western English Channel. Journal of the Marine Biological Association of the United Kingdom, 57, 10751093.Google Scholar
HolliganP.M., P.M.,Pingree, R.D. & MardellG.T., G.T., 1985. Oceanic solitons, nutrient pulses and phytoplankton growth. Nature, London, 314, 348350.Google Scholar
Kelly, P.M. & SearC.B., C.B., 1984. Climatic impact of explosive volcanic eruptions. Nature, London, 311, 740743.Google Scholar
Klein, P. & CosteB., B., 1984. Effects of wind-stress variability on nutrient transport into the mixed layer. Deep-Sea Research, 31 A, 2137.CrossRefGoogle Scholar
KurcG., G., 1963. Rapports entre 1'hydrologie et la pëche de la sardine dans le golfe de Gascogne. Corrtparaison entre une annee de bonne pëche (1962) et une annee de peche mediocre (1961). International Council for the Exploration of the Sea (CM Papers and Reports), comite sardine 52, 6 pp.Google Scholar
KurcG., G., 1964. La biologie et la peche des sardines en relation avec 1'hydrologie. Science et Peche, no. 178, 14 pp.Google Scholar
LeCorreP., P.,MorinP., P.,LeFevre, J. & BirrienJ.L., J.L., 1983. The pelagic ecosystem in frontal zones and other environments off the west coast of Brittany. oceanologica Acta, special volume, 125–129.Google Scholar
LegallJ., J., 1932. L'explication scientifique d'une observation pratique “la coupure d'aout”. Peche et Pisciculture, 717, 345347.Google Scholar
LetareauJ.Y., J.Y.,MazeR., R.,LefevreJ., J.,Billard, C. & CamusY., Y., 1983. Campagnes Envat 81: aspects méteorologiques, chimiques, biologiques, hydrodynamiques et thermodynamiques, Metmar, 118, 625.Google Scholar
Mariette, V. 1985. Effets des Echanges Atmosphériques sur la Structure Thermique. Application à des Zones du Large et a la Zone Cotiere. Thése dr, Universite de Bretagne Occidentale, Brest.Google Scholar
Mariette, V. & LeCannB., B., 1985. Simulation of the formation of the Ushant thermal front. Continental Shelf Research, 4, 637660.Google Scholar
MarietteV., V.,Lesaosj., P. & Rougier, G. 1983. Resultats des Mesures d'Oceanographie Physique Realisees lors de la Campagne Satir-Dynatlant. Brest: Rapport scientifique, Université de Bretagne Occidentale.Google Scholar
MazeR., R.,Camus, Y. & LetareauJ.Y., J.Y., 1986. Formation de gradient thermiques à la surface de 1'ocean, au dessus d'un talus, par interaction entre les ondes internes et le melange du au vent. Journal du Conseil, 42, 221240.Google Scholar
OrtnerP.B., P.B.,Wiebe, P.H. & CoxJ.L., J.L., 1980. Relationships between oceanic epizooplankton distributions and the seasonal deep chlorophyll maximum in the Northwestern Atlantic Ocean. Journal of Marine Research, 38, 507531.Google Scholar
Pingree, R.D.Holligan, P.M.Mardell, G.T. & HeadR.N., R.N., 1976. The influence of physical stability on spring, summer and autumn phytoplankton blooms in the Celtic Sea. Journal of the Marine Biological Association of the United Kingdom, 56, 845873.Google Scholar
Pingree, R.D. & Mardell, G.T. 1981. Slope turbulence, internal waves and phytoplankton growth at the Celtic Sea shelf-break. Philosophical Transactions of the Royal Society (A), 302, 663682.Google Scholar
Prager, M.H. & Hoenig, J.M. 1989. Superposed Epoch Analysis for significance tests of environ-mental effects on recruitment: application to chub mackerel. International Council for the Exploration of the Seas (CM. Papers and Reports), D: 10, 17 pp.Google Scholar
Snedecor, G.W. & CochranW.G., W.G., 1984. Méthodes Statistiques, 6éme éd. Ames:Iowa State University Press.Google Scholar
Wroblewski, J.S. & RichmanJ.G., J.G., 1987. The non-linear response of plankton to wind mixing events implications for survival of larval northern anchovy. Journal of Plankton Research, 9, 103123.CrossRefGoogle Scholar