Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-22T17:58:37.152Z Has data issue: false hasContentIssue false

Production of Mussels, Mytilus Edulis, in Suspended Culture and Estimates of Carbon and Nitrogen Flow: Killary Harbour, Ireland

Published online by Cambridge University Press:  11 May 2009

P. G. Rodhouse
Affiliation:
Shellfish Research Laboratory, Carna, Co. Galway, Ireland
C. M. Roden
Affiliation:
Shellfish Research Laboratory, Carna, Co. Galway, Ireland
M. P. Hensey
Affiliation:
Shellfish Research Laboratory, Carna, Co. Galway, Ireland
T. H. Ryan
Affiliation:
Shellfish Research Laboratory, Carna, Co. Galway, Ireland

Extract

Culture of mussels, Mytilus edulis L. is a developing industry in Irish coastal waters. Settling larvae are collected on 10 m long ropes which are suspended from g.r.p. rafts at a density of five ropes per square metre or from paired long lines, buoyed by plastic floats, at a density of some four hundred ropes per hundred metres. Mussels are harvested after eighteen months when the ropes yield up to 5 kg live weight per metre or approximately 250 kg m−2. Commercial culture at this density clearly exerts a considerable effect on energy and nutrient flow in the coastal ecosystem. In order to quantify the role of cultured mussels we investigated the carbon and nitrogen budget for production rafts and long lines in Killary Harbour, a fjordic inlet on the Irish west coast (Rodhouse et al. 1984) and compared these with estimates for the wild population on the shore.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baird, D. & Milne, H., 1981. Energy flow in the Ythan estuary, Aberdeenshire, Scotland. Estuarine, Coastal and Shelf Science, 13, 455472.CrossRefGoogle Scholar
Bayne, B. L. & Newell, R. C., 1983. Physiological energetics of marine molluscs. In The Mollusca (ed. Saleuddin, A. S. M. and Wilbur, K. M.), vol. 4, part 1, pp. 407515. New York: Academic Press.Google Scholar
Bayne, B. L., Widdows, J. & Newell, R. I. E., 1977. Physiological measurements on estuarine bivalve molluscs in the field. In Biology ofBenthic Organisms. Proceedings of the 11th European Symposium on Marine Biology, Galway, Ireland, 1976 (ed. Keegan, B. F., Ó Céidigh, P. and Boaden, P. J. S.), pp. 5768. Oxford: Pergamon Press.CrossRefGoogle Scholar
Bayne, B. L., Widdows, J. & Thompson, R. J., 1976. Physiology: II. In Marine Mussels (ed. Bayne, B. L.), pp. 207260. Cambridge University Press.Google Scholar
Cabanas, J. M., Gonzalez, J. J., Marino, J., Perez, A. & Roman, G., 1979. Estudio de mejillon y de su epifauna en los cultivos flotantes de la Ria de Arosa. III. Observaciones previas sobre la retencion de particulos y la biodeposicion de una batea. Boletin del Instituto español de oceanografia, 5 (268), 4550.Google Scholar
Crisp, D. J., 1971. Energy flow measurements. In Methods for the Study of Marine Benthos (ed. Holme, N. A. and McIntyre, A. D.), pp. 197279. Oxford: Blackwell. [IBP Handbook no. 16.]Google Scholar
Dahlback, B. & Gunnarsson, L. A. H., 1981. Sedimentation and sulfate reduction under a mussel culture. Marine Biology, 63, 269275.CrossRefGoogle Scholar
Deaton, L. E., 1984. Free amino acid uptake by bivalves. American Journal of Physiology, 246, R637–R638.Google ScholarPubMed
Elliot, J. M. & Davison, W., 1975. Energy equivalents of oxygen consumption in animal energetics. Oecologia, 19, 195201.CrossRefGoogle Scholar
Humphreys, W. F., 1979. Production and respiration in animal populations. Journal of Animal Ecology, 48, 427453.CrossRefGoogle Scholar
Kautsky, N., 1982 a. Growth and size structure in a Baltic Mytilus edulis population. Marine Biology, 68, 117133.CrossRefGoogle Scholar
Kautsky, N., 1982 b. Quantitative studies on gonad cycle, fecundity, reproductive output and recruitment in a Baltic Mytilus edulis population. Marine Biology, 68, 143160.CrossRefGoogle Scholar
Koehn, R. K. & Gaffney, P. M., 1984. Genetic heterozygosity and growth rate in Mytilus edulis. Marine Biology, 82, 17.CrossRefGoogle Scholar
Loo, L. O. & Rosenberg, R., 1983. Mytilus edulis culture: growth and production in western Sweden. Aquaculture, 35, 137150.CrossRefGoogle Scholar
Manahan, D. T., Wright, S. J. & Stevens, G. C., 1983. Simultaneous determination of net uptake of 16 amino acids by a marine bivalve. American Journal of Physiology, 244, 832838.Google ScholarPubMed
Odum, H. T., 1972. An energy circuit language for ecological and social systems: its physical basis. In Systems Analysis and Simulation in Ecology, vol. II (ed. Patten, B. C.), pp. 139211. New York: Academic Press.CrossRefGoogle Scholar
Rodhouse, P. G. & O'Kelly, M., 1981. Flow requirements of the oysters Ostrea edulis L. and Crassostrea gigas Thunb. in an upwelling column system of culture. Aquaculture, 22, 110.CrossRefGoogle Scholar
Rodhouse, P. G., Roden, C. M., Hensey, M. P., Mcmahon, T., Ottway, B. & Ryan, T. H., 1984. Food resource, gametogenesis and growth of the mussel Mytilus edulis on the shore and in suspended culture: Killary Harbour, Ireland. Journal of the Marine Biological Association of the United Kingdom, 64, 513529.CrossRefGoogle Scholar
Rodhouse, P. G., Roden, C. M., Hensey, M. P. & Ryan, T. H., 1985. Resource allocation in the mussel Mytilus edulis on the shore and in suspended culture. Marine Biology. (In the Press.)CrossRefGoogle Scholar
Rosenberg, R. & Loo, L. O., 1983. Energy-flow in a Mytilus edulis culture in western Sweden. Aquaculture, 35, 151161.CrossRefGoogle Scholar
Strickland, J. D. H. & Parsons, T.R., 1972. A practical handbook of seawater analysis, 2nd edition. Bulletin. Fisheries Research Board of Canada, no. 167, 310 pp.Google Scholar
Vahl, O., 1973. Pumping and oxygen consumption rates of Mytilus edulis L. of different sizes. Ophelia, 12, 4552.CrossRefGoogle Scholar
Widdows, J., Fieth, P. & Worrall, C. M., 1979. Relationships between seston, available food and feeding activity in the common mussel Mytilus edulis. Marine Biology, 50, 195207.CrossRefGoogle Scholar