Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-03T13:16:20.596Z Has data issue: false hasContentIssue false

Polymerase Chain reaction and 16S rRNA gene sequences from the luminous bacterial symbionts of two deep-sea anglerfishes

Published online by Cambridge University Press:  11 May 2009

Margo G. Haygood
Affiliation:
Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, USA
Daniel L. Distel
Affiliation:
Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, USA
Peter J. Herring
Affiliation:
Institute of Oceanographic Sciences Deacon Laboratory, Brook Road, Wormley, Surrey, GU8 5UB

Extract

Sequences of the 16S ribosomal RNA gene of luminous bacterial symbionts from the escas of the deep sea anglerfishes Melanocetus johnsoni and Cryptopsaras couesi were determined by direct sequencing of polymerase chain reaction products. A sequence was also obtained from a strain of Photobacterium phosphoreum, the culturable light organ symbiont of Opisthoproctus grimaldii. Comparison of these and other published sequences showed that the anglerfish symbionts group with the marine luminous bacteria but are not closely related to P. phosphoreum. The two ceratioid symbionts differ from each other at least at the species level.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bassot, J.-M., 1966. On the comparative morphology of some luminous organs. In Bioluminescence in Progress (ed. Johnson, F.H. and Haneda, Y.), pp. 557610. Princeton: Princeton University Press.Google Scholar
Brosius, J., Dull, T.J., Sleeter, D.D. & Noller, H.F., 1981. Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. Journal of Molecular Biology, 148, 107127.CrossRefGoogle ScholarPubMed
Distel, D.L., Lane, D.J., Olsen, G.J., Giovannoni, S.J., Pace, B., Pace, N.R., Stahl, D.A. & Felbeck, H., 1988. Sulfur-oxidizing bacterial endosymbionts: analysis of phylogeny and specificity by 16S rRNA sequences. Journal of Bacteriology, 170, 25062510.CrossRefGoogle ScholarPubMed
Ditta, G., Stanfield, S.Corbin, D. & Helinski, D.R. 1980. Broad host range DNA cloning system for Gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proceedings of the National Academy of Sciences of the United States of America, 77, 73477351.CrossRefGoogle ScholarPubMed
Felsenstein, J., 1989. Phylip. Phylogeny inference package (version 3·2). Cladistics, 5, 164166.Google Scholar
Fitzgerald, J.M., 1977. Classification of luminous bacteria from the light organ of the Australian pine-cone fish, Cleidopus gloriamaris. Archives of Microbiology, 112, 153156.CrossRefGoogle Scholar
Fox, G.E. et al., 1980. The phylogeny of prokaryotes. Science, New York, 209, 457463.CrossRefGoogle ScholarPubMed
Giovannoni, S.J., Britschgi, T.B., Moyer, C.L. & Field, K.G., 1990. Genetic diversity in Sargasso Sea bacterioplankton. Nature, London, 345, 6063.Google Scholar
Hansen, K. & Herring, P.J., 1977. Dual bioluminescent systems in the anglerfish genus Linophryne (Pisces: Ceratioidea). Journal of Zoology, 182, 103124.CrossRefGoogle Scholar
Haygood, M.G., 1990. Relationship of the luminous bacterial symbiont of the Caribbean flashlight fish, Kryptophanaron alfredi (family Anomalopidae) to other luminous bacteria based on bacterial luciferase (luxA) genes. Archives of Microbiology, 154, 496503.CrossRefGoogle ScholarPubMed
Haygood, M.G., Tebo, B.M. & Nealson, K.H., 1984. Luminous bacteria of a monocentrid fish (Monocentris japonicus) and two anomalopid fishes (Photoblepharon palpebratus and Kryptophanaron alfredi): population sizes and growth within the light organs, and rates of release into the sea-water. Marine Biology, 78, 249254.Google Scholar
Herring, P.J., 1975. Bacterial bioluminescence in some argentinoid fishes. In Proceedings of the ninth European Marine Biological Symposium (ed. Barnes, H.), pp. 563572. Aberdeen: Aberdeen University Press.Google Scholar
Hulet, W.H. & Musil, G., 1968. Intracellular bacteria in the light organ of the deep sea angler fish, Melanocetus murrayi. Copeia, 1968, 506512.CrossRefGoogle Scholar
Hultman, T., Stahl, S., Homes, E. & Uhlen, M., 1989. Direct solid phase sequencing of genomic and plasmid DNA using magnetic beads as solid support. Nucleic Acids Research, 17, 49374946.Google Scholar
Lane, D.S., 1990. 16S and 23S rRNA sequencing. In Nucleic acid techniques in bacterial systematics (ed. E., Stackebrandt and M., Goodfellow), pp. 115148. New York: John Wiley and Sons.Google Scholar
Lee, K.-H. & Ruby, E.G., 1991. Natural abundance and distribution of luminous bacterial light organ symbionts in sea-water. Abstracts of the 91st general meeting of the American Society for Microbiology, 1991, 194.Google Scholar
Leisman, G., Cohn, D.H. & Nealson, K.H., 1980. Bacterial origin of luminescence in marine animals. Science, New York, 208, 12711273.CrossRefGoogle ScholarPubMed
Macdonell, M.T. & Colwell, R.R., 1985. Phylogeny of the Vibrionaceae, and recommendation for two new genera, Listonella and Shewanella. Systematic and Applied Microbiology, 6, 171182.CrossRefGoogle Scholar
Munk, O. & Bertelsen, E., 1980. On the esca light organ and its associated light-guiding structures in the deep-sea anglerf ish Chaenophryne draco (Pisces, Ceratioidei). Videnskabelige Meddelelser fra Dansk Naturhistorisk Forening i København, 142, 103129.Google Scholar
Munk, O., 1988. Glandular tissue of escal light organ in the deep-sea anglerfish Oneirodes eschrichti (Pisces, Ceratioidei). Videnskabelige Meddelelser fra Dansk Naturhistorisk Forening i København, 147, 93120.Google Scholar
Nealson, K.H., 1978. Isolation, identification and manipulation of luminous bacteria. Methods in Enzymology, 57, 153166.CrossRefGoogle Scholar
O'day, W.T., 1974. Bacterial luminescence in the deep-sea anglerfish Oneirodes acanthias (Gilbert, 1915). Contributions in Science, New York, Los Angeles County Museum of Natural History, no. 7, 112.CrossRefGoogle Scholar
Olsen, G.J., 1987. Earliest phylogenetic branchings: comparing rRNA-based evolutionary trees inferred with various techniques. Cold Spring Harbor Symposia in Quantitative Biology, 52, 825837.CrossRefGoogle ScholarPubMed
Olsen, G.J., 1988. Phylogenetic analysis using ribosomal RNA. Methods in Enzymology, 164, 793812.Google Scholar
Olsen, G.J., Lane, D.J., Giovannoni, S.J., Pace, N.R. & Stahl, D.A., 1986. Microbial ecology and evolution: a ribosomal RNA approach. Annual Review of Microbiology, 40, 337365.CrossRefGoogle ScholarPubMed
Olsen, G.J., Larsen, N. & Woese, C.R., 1991. The ribosomal database project. Nucleic Acids Research, 19, 20172021.CrossRefGoogle Scholar
Pace, N.R., Stahl, D. A., Lane, D.J. & Olsen, G.J., 1986. The analysis of natural microbial populations by ribosomal RNA sequences. Advances in Microbial Ecology, 9, 155.Google Scholar
Reichelt, J.L., Nealson, K.H. & Hastings, J.W., 1977. The specificity of symbiosis: pony fish and luminescent bacteria. Archives of Microbiology, 112, 157161.CrossRefGoogle Scholar
Ruby, E.G., Greenberg, E.P. & Hastings, J.W., 1980. Planktonic marine luminous bacteria: species distribution in the water column. Applied and Environmental Microbiology, 39, 302306.CrossRefGoogle ScholarPubMed
Ruby, E.G. & Morin, J.G., 1978. Specificity of symbiosis between deep-sea fishes and psychrotrophic luminous bacteria. Deep-Sea Research, 25, 161167.CrossRefGoogle Scholar
Ruby, E.G. & Nealson, K.H., 1976. Symbiotic association of Photobacterium fischeri with the marine luminous fish Monocentris japonica: a model of symbiosis based on bacterial studies. Biological Bulletin. Marine Biological Laboratory, Woods Hole, 151, 574586.CrossRefGoogle Scholar
Stahl, D.A., Flesher, B., Mansfield, H.R. & Montgomery, L., 1988. Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Applied and Environmental Microbiology, 54, 10791084.Google Scholar
Stahl, D.A., Lane, D.J., Olsen, G.J. & Pace, N.R., 1984. Analysis of hydrothermal vent-associated symbionts by ribosomal RNA sequences. Science, New York, 224, 409411.CrossRefGoogle ScholarPubMed
Swofford, D.L., 1990. PAUP: phylogenetic analysis using parsimony, version 3·0. Computer program. Illinois Natural History Survey, Champaign, Illinois, USA.Google Scholar
Weller, R. & Ward, D., 1989. Selective recovery of 16S rRNA sequences from natural microbial communities in the form of cDNA. Applied and Environmental Microbiology, 55, 18181822.Google Scholar
Woese, C.R., 1987. Bacterial evolution. Microbiological Reviews, 51, 221271.CrossRefGoogle ScholarPubMed
Woese, C.R., Kandler, O. & Wheelis, M.L., 1990. Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences of the United States of America, 87, 45764579.CrossRefGoogle ScholarPubMed
Wolfe, C.J. & Haygood, M.G., 1991. Restriction fragment length polymorphism analysis reveals high levels of genetic divergence among the light organ symbionts of flashlight fish. Biological Bulletin. Marine Biological Laboratory, Woods Hole, 181, 135143.CrossRefGoogle ScholarPubMed