Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-03T15:12:25.618Z Has data issue: false hasContentIssue false

Phylogeography of the horse mussel Modiolus modiolus

Published online by Cambridge University Press:  31 May 2013

Kenneth M. Halanych*
Affiliation:
Department of Biological Sciences, Auburn University, Auburn, AL, USA
E. Thuróczy Vodoti
Affiliation:
University of Gothenburg, Department of Biological and Environmental Sciences, PO Box 463, SE-405 30 Göteborg, Sweden
Per Sundberg
Affiliation:
University of Gothenburg, Department of Biological and Environmental Sciences, PO Box 463, SE-405 30 Göteborg, Sweden
Thomas G. Dahlgren*
Affiliation:
University of Gothenburg, Department of Biological and Environmental Sciences, PO Box 463, SE-405 30 Göteborg, Sweden Uni Research, Thormøhlensgate 55, Bergen, Norway
*
Correspondence should be addressed to: K. Halanych, 101 Life Sciences Building, Department of Biological Sciences, Auburn University, Auburn, AL 36849USA email: [email protected]
T. Dahlgren, Uni Research, Thormøhlensgate 55 5008 Bergen, Norway email: [email protected]

Abstract

Phylogeographic inferences concerning marine species are largely based on intertidal species. In high latitudes, intertidal species have been affected by ice coverage and ice scour, and therefore show northern range limitations during glaciations. In this study, we use the subtidal horse mussel (Modiolus modiolus) to investigate whether generalizations about genetic structure of high latititude intertidal species, specifically in the North Atlantic, are representative of other near shore taxa. We analysed genetic diversity, molecular variance, and geographical patterns of genetic relatedness using data from the mtDNA CO1 gene. Although we do find little to no haplotype structure in the North Atlantic, our results show that north-eastern Pacific individuals represent a different haplotype network with no haplotypes in common with Atlantic individuals. Thus, M. modiolus in the Pacific may represent an unrecognized species. Genetic diversity and population expansion times suggest a Pacific origin is most likely, with subsequent dispersal to the Atlantic. The lack of genetic structure in the Atlantic suggests that a rapid range expansion occurred less than 50 KYA, rather than a stepping stone mode of dispersal.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Addison, J.A. and Hart, M.W. (2005) Colonization, dispersal, and hybridization influence phylogeography of North Atlantic sea urchins (Strongylocentrotus droebachiensis). Evolution 59, 532543.Google ScholarPubMed
Anwar, N.A., Richardson, C.A. and Seed, R. (1990) Age determination growth rate and population structure of the horse mussel Modiolus modiolus. Journal of the Marine Biological Association of the United Kingdom 70, 441457.CrossRefGoogle Scholar
Audzijonyte, A. and Väinölä, R. (2006) Phylogeographic analyses of a circumarctic coastal and a boreal lacustrine mysid crustacean, and evidence of fast postglacial mtDNA rates. Molecular Ecology 15, 32873301.CrossRefGoogle Scholar
Avise, J.C. (2001) Phylogeography. The history and formation of species. 3rd edition. Cambridge, MA: Harvard University Press.Google Scholar
Brown, R.A. and Seed, R. (1977) Modiolus modiolus (L.). An autoecological study. In Keegan, B.K., Cleidigh, P.O. and Boddin, P.J.S. (eds) Biology of benthic organisms. Oxford: Pergamon Press, pp. 93100.CrossRefGoogle Scholar
Campo, D., Molares, J., Garcia, L., Fernandez-Rueda, P., Garcia-Gonzalez, C. and Garcia-Vazquez, E. (2010) Phylogeography of the European stalked barnacle (Pollicipes pollicipes): identification of glacial refugia. Marine Biology 157, 147156.CrossRefGoogle Scholar
Clement, M., Posada, D. and Crandall, K.A. (2000) TCS: a computer program to estimate gene genealogies. Molecular Ecology 9, 16571660.CrossRefGoogle ScholarPubMed
Cunningham, C.W. and Collins, T.M. (1998) Beyond area relationships: extinction and recolonization in molecular marine biogeography. In Schierwater, B., Streit, B., Wagner, G. and DeSalle, R. (eds) Molecular ecology and evolution: approaches and applications. Basel: Birkhäuser, pp. 297321.Google Scholar
Dahlgren, T.G., Weinberg, J.R. and Halanych, K.M. (2000) Phylogeography of the ocean quahog (Arctica islandica): influence of paleoclimate on the diversity and species range. Marine Biology 137, 487495.CrossRefGoogle Scholar
Davenport, J. and Kjørsvik, E. (1982) Observations on a Norwegian intertidal population of the horse mussel Modiolus modiolus (L.). Journal of Molluscan Studies 48, 370371.CrossRefGoogle Scholar
Excoffier, L., Laval, G. and Schneider, S. (2005) Arlequin ver. 3.0: an integrated software package for population genetic analysis. Evolution and Bioinformatics Online 1, 4750.Google Scholar
Folmer, O., Black, M., Hoeh, W., Lutz, R. and Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit 1 from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294299.Google Scholar
Fu, Y.X. and Li, W.H. (1993) Statistical tests of neutrality of mutations. Genetics 133, 693709.CrossRefGoogle ScholarPubMed
Gladenkov, A.Y., Oleinik, A.E., Marincovich, L. Jr and Barinov, K.B. (2002) A refined age for the earliest opening of the Bering Strait. Palaeogeography, Palaeoclimatology, Palaeoecology 183, 321328.CrossRefGoogle Scholar
Harpending, H.C. (1994) Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Human Biology 66, 591600.Google Scholar
Hartl, D.L. and Clark, A.G. (1997) Principles of population genetics. 3rd edition. Sinauer Associates: Sunderland, MA.Google Scholar
Hewitt, G. (2000) The genetic legacy of the Quarternary ice ages. Nature 405, 907913.CrossRefGoogle Scholar
Howland, R.J.M., Pantiulin, A.N., Millward, G.E. and Prego, R. (1999) The hydrography of the Chupa estuary, White Sea, Russia. Estuarine, Coastal and Shelf Science 48, 112.CrossRefGoogle Scholar
Ingólfsson, A. (2009) A marine refugium in Iceland during the last glacial maximum: fact or fiction? Zoologica Scripta 38, 663665.CrossRefGoogle Scholar
Janssen, A.W., Peeters, G.A. and van der Slik, L. (1984) De fossiele schelpen van de Nederlandse stranden en zeegaten, tweede serie. VIII. Basteria 48, 91219.Google Scholar
Jasim, A.K.N. and Brand, A.R. (1989) Observations on the reproduction of Modiolus modiolus in the Isle of Man. Journal of the Marine Biological Association of the United Kingdom 69, 373385.CrossRefGoogle Scholar
Jolly, M.T., Viard, F., Gentil, F., Thiebaut, E. and Jollivet, D. (2006) Comparative phylogeography of two coastal polychaete tubeworms in the Northeast Atlantic supports shared history and vicariant events. Molecular Ecology 15, 18411855.CrossRefGoogle ScholarPubMed
Luttikhuisen, P.C., Drent, J. and Baker, A.J. (2003) Disjunct distribution of highly diverged mitochondrial lineage clade and population subdivision in a marine bivalve with pelagic larval dispersal. Molecular Ecology 12, 22152229.CrossRefGoogle Scholar
Maddison, D.R. and Maddison, W.P. (2005) MacClade. Sunderland, MA: Sinauer Associates.Google Scholar
Maggs, C.A., Castilho, R., Foltz, D., Henzler, C., Jolly, M.T., Kelly, J., Olsen, J., Pereze, K.E., Stam, W., Vainola, R., Viard, F. and Wares, J. (2008) Evaluating signatures of glacial refugia for North Atlantic benthic marine taxa. Ecology 89, 108122.CrossRefGoogle ScholarPubMed
Marko, P.B., Hoffman, J.M., Emme, S.A., McGovern, T.M., Keever, C. and Cox, L.N. (2010) The ‘Expansion–Contraction' model of Pleistocene biogeography: rocky shores suffer a sea change? Molecular Ecology 19, 146169.CrossRefGoogle ScholarPubMed
Marko, P.B. and Moran, A.L. (2002) Correlated evolutionary divergence of egg size and a mitochondrial protein across the Isthmus of Panama. Evolution 56, 13031309.Google Scholar
Muhlin, J.F. and Brawley, S.H. (2009) Recent versus relic: discerning the genetic signature of Fucus vesiculosus (Heterokontophyta; Phaeophyceae) in the Northwestern Atlantic. Journal of Phycology 45, 828837.CrossRefGoogle ScholarPubMed
Muths, D., Jollivet, D., Gentil, F. and Davoult, D. (2009) Large-scale genetic patchiness among NE Atlantic populations of the brittle star Ophiothrix fragilis. Aquatic Biology 5, 117132.CrossRefGoogle Scholar
Nylander, J.A.A. (2004) MrModeltestv2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.Google Scholar
Ojeda, F.P. and Dearborn, J.H. (1989) Community structure of macroinvertebrates inhabiting the rocky subtidal zone in the Gulf of Maine: seasonal and bathymetric distribution. Marine Ecology Progress Series 57, 147161.CrossRefGoogle Scholar
Ray, N., Currat, M. and Excoffier, L. (2003) Intra-deme molecular diversity in spatially expanding populations. Molecular Biology and Evolution 20, 7686.CrossRefGoogle ScholarPubMed
Rogers, A.R. and Harpending, H. (1992) Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution 9, 552569.Google ScholarPubMed
Rozas, J. and Rozas, R. (1999) DNAsp version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15, 174175.CrossRefGoogle ScholarPubMed
Sabatini, M. and Pizzolla, P. (2008) Arctica islandica. Icelandic cyprine. Marine Life Information Network: Biology and Sensitivity Key Information Sub-programme. Plymouth: Marine Biological Association of the United Kingdom. Available at: http://www.marlin.ac.uk/reproduction.php?speciesID=2588 (accessed 18 March 2013).Google Scholar
Salvigsen, O. (2002) Radiocarbon-dated Mytilus edulis and Modiolus modiolus from northern Svalbard: climatic implications. Norwegian Journal of Geography 56, 5661.Google Scholar
Schweinitz, E.H. and Lutz, R.A. (1976) Larval development of the northern horse mussel Modiolus modiolus (L.), including a comparison with the larvae of Mytilus edulis L. as an aid in planktonic identification. Biological Bulletin. Marine Biological Laboratory, Woods Hale 150, 348360.CrossRefGoogle ScholarPubMed
Svendsen, J.I., Alexanderson, H., Astakhov, V.I., Demidov, I., Dowedswell, J.A., Funder, S., Gataullin, V., Henriksen, M., Hjort, C., Houmark-Nielsen, M., Hubberten, H.W., Ingolfsonn, O., Jakobsson, M., Kjaer, K.H., Larsen, E., Lokarntz, H., Lunkka, J.P., Lysa, A., Mangerud, J., Matiouchkov, A., Murray, A., Moller, P., Niessen, F., Nikolskaya, O., Polyak, L., Saarnisto, M., Siergert, C., Siegert, M.J., Spielhagen, R.F. and Stein, R. (2004) Late Quaternary ice sheet history of northern Eurasia. Quaternary Science Reviews 23, 12291271.CrossRefGoogle Scholar
Tajima, F. (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585593.CrossRefGoogle ScholarPubMed
Templeton, A.R., Crandall, K.A. and Sing, C.F. (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132, 619633.CrossRefGoogle ScholarPubMed
Thompson, J.D., Higgins, D.G. and Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Research. 22, 46734680.CrossRefGoogle ScholarPubMed
Tyler-Walters, H. (2007) Modiolus modiolus. Horse mussel. Marine Life Information Network: Biology and Sensitivity Key Information Sub-programme. Plymouth: Marine Biological Association of the United Kingdom. Available at: http://www.marlin.ac.uk/species/Modiolusmodiolus.htm (accessed 18 March 2013).Google Scholar
Vermeij, G.J. (1989) Invasion and extinction: the last three million years of North Sea pelecypod history. Conservation Biology 3, 274281.CrossRefGoogle Scholar
Vermeij, G.J. (1991) Anatomy of an invasion: the trans-Arctic interchange. Paleobiology 17, 281307.CrossRefGoogle Scholar
Vermeij, G.J. (1996) An agenda for invasion biology. Biological Conservation 78, 39.CrossRefGoogle Scholar
Vermeij, G.J. (2005) From Europe to America: Pliocene to Recent trans-Atlantic expansion of cold-water North Atlantic mollluscs. Proceedings of the Royal Society, B: Biological Sciences 272, 25452550.CrossRefGoogle Scholar
Wares, J.P. (2002) Community genetics in the Northwestern Atlantic intertidal. Molecular Ecology 11, 11311144.CrossRefGoogle ScholarPubMed
Wares, J.P. and Cunningham, C.W. (2001) Phylogeography and historical ecology of the north Atlantic intertidal. Evolution 55, 24552469.Google ScholarPubMed
Weinberg, J.R., Dahlgren, T.G. and Halanych, K.A. (2002) Influence of rising sea temperature on commercial bivalve species of the US Atlantic Coast. Fisheries in a Changing Climate 32, 131140.Google Scholar
Won, Y., Young, C.R., Lutz, R.A. and Vrijenhoek, R.C. (2003) Dispersal barriers and isolation among deep-sea mussel populations (Mytilidae: Bathymodiolus) from eastern Pacific hydrothermal vents. Molecular Ecology 12, 169184.CrossRefGoogle ScholarPubMed
Young, A.M., Torres, C., Mack, J.E. and Cunningham, C.W. (2002) Morphological and genetic evidence for vicariance and refugium in Atlantic and Gulf of Mexico populations of the hermit crab Pagurus longicarpus. Marine Biology 140, 10591066.Google Scholar