Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-03T20:46:14.388Z Has data issue: false hasContentIssue false

The phylogenetic relationships between Amphinomidae, Archinomidae and Euphrosinidae (Amphinomida: Aciculata: Polychaeta), inferred from molecular data

Published online by Cambridge University Press:  14 May 2008

Helena Wiklund*
Affiliation:
Department of Zoology, Göteborg University, PO Box 463, SE-405 30 Göteborg, Sweden
Arne Nygren
Affiliation:
Department of Zoology, Göteborg University, PO Box 463, SE-405 30 Göteborg, Sweden
Fredrik Pleijel
Affiliation:
Department of Marine Ecology, Tjärnö Marine Biological Laboratory, Göteborg University, SE-452 96 Strömstad, Sweden
Per Sundberg
Affiliation:
Department of Zoology, Göteborg University, PO Box 463, SE-405 30 Göteborg, Sweden
*
Correspondence should be addressed to: Helena WiklundGöteborg UniversityDepartment of Zoology PO Box 463 SE-405 30 Göteborg, Sweden email: [email protected]

Abstract

Amphinomida is an ‘isolated’ clade within the polychaete group Aciculata and traditionally includes the families Amphinomidae, Archinomidae and Euphrosinidae. Archinomidae were erected for a single species, the hydrothermal vent polychaete Archinome rosacea. Originally, A. rosacea was assigned to Euphrosinidae although it shares more morphological similarities with Amphinomidae. In this study we assess the position of Archinome, Euphrosinidae and Amphinomidae by using molecular data from nuclear 18S rDNA and 28S rDNA. Parsimony, maximum likelihood and Bayesian analyses are performed on the nucleotide datasets covering in total 19 terminals from Amphinomidae, Euphrosinidae, Archinomidae and outgroups. Our results conclusively show that Euphrosinidae and Amphinomidae are sister taxa and that Archinome is sister to Chloeia within Amphinomidae. Based on these results the family name Archinomidae is treated as a junior synonym of Amphinomidae.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Blake, J.A. (1985) Polychaeta from the vicinity of deep-sea geothermal vents in the eastern Pacific. I. Euphrosinidae, Phyllodocidae, Hesionidae, Nereididae, Glyceridae, Dorvilleidae, Orbiniidae, and Maldanidae. Bulletin of the Biological Society of Washington 6, 67101.Google Scholar
Cohen, B.L., Gawthrop, A. and Cavalier-Smith, T. (1998) Molecular phylogeny of brachiopods and phoronids based on nuclear-encoded small subunit ribosomal RNA gene sequences. Philosophical Transactions of the Royal Society of London Series B—Biological Sciences 353, 20392061.CrossRefGoogle Scholar
Day, J.H. (1967) A monograph on the Polychaeta of southern Africa. Part 1. Errantia. London: Trustees of the British Museum (Natural History).Google Scholar
Farris, J., Källersjö, M., Kluge, A.G. and Bult, C. (1995) Constructing a significance test of incongruence. Systematic Biology 44, 570572.CrossRefGoogle Scholar
Fauchald, K. (1977) The polychaete worms. Definitions and keys to the orders, families and genera. Natural History Museum of Los Angeles County. Science Series 28, 1188.Google Scholar
Fauchald, K. and Jumars, P.A. (1979) The diet of worms: a study of polychaete feeding guilds. Oceanography and Marine Biology: an Annual Review 17, 193284Google Scholar
Fauchald, K. and Rouse, G. (1997) Polychaete systematics: past and present. Zoologica Scripta 26, 71138.CrossRefGoogle Scholar
Glasby, C.J., Hutchings, P.A., Fauchald, K., Paxton, H., Rouse, G.W., Watson Russell, C. and Wilson, R.S. (2000) Class Polychaeta. In Beesley, P.L. et al. (eds) Polychaetes and allies: the southern synthesis. Melbourne: CSIRO Publishing, pp. 1296.Google Scholar
Kudenov, J.D. (1991) A new family and genus of the order Amphinomida (Polychaeta) from the Galapagos hydrothermal vents. In Petersen, M.E and Kirkegaard, J.B. (eds) Proceedings of the 2nd International Polychaeta Conference, Copenhagen, 1986. Systematics, Biology and Morphology of World Polychaeta. Ophelia 5, Supplement, pp. 111120.CrossRefGoogle Scholar
Kudenov, J.D. (1994) The order Amphinomida: a revision of the families (Annelida, Polychaeta). In Dauvin, J.-C. et al. (eds), Actes de la 4ème Conférence Internationale des Polychètes. Mémoires du Muséum National d'Histoire Naturelle, pp. 627628.Google Scholar
, H.L.V., Lecointre, G. and Perasso, R. (1993) A 28S rRNA based phylogeny of the gnathostomes: first steps in the analysis of conflict and congruence with morphologically based cladograms. Molecular Phylogenetics and Evolution 2, 3151.CrossRefGoogle ScholarPubMed
Medlin, L., Elwood, H.J., Stickel, S. and Sogin, M.L. (1988) The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71, 491499.CrossRefGoogle ScholarPubMed
Nygren, A. and Sundberg, P. (2003) Phylogeny and evolution of reproductive modes in Autolytinae (Syllidae, Annelida). Molecular Phylogenetics and Evolution 29, 235249.CrossRefGoogle ScholarPubMed
Nylander, J.A.A. (2004) MrModeltest v2. Program distributed by the author. Uppsala University: Evolutionary Biology Centre.Google Scholar
Pleijel, F., Rouse, G.W. and Vannier, J. (2004) Carboniferous fireworms (Amphinomida: Annelida), with a discussion of species taxa in palaeontology. Invertebrate Systematics 18, 693700.CrossRefGoogle Scholar
Posada, D. and Crandall, K.A. (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14, 817818.CrossRefGoogle ScholarPubMed
Ronquist, F. and Huelsenbeck, J.P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 15721574.CrossRefGoogle ScholarPubMed
Rouse, G.W. and Fauchald, K. (1997) Cladistics and polychaetes. Zoologica Scripta 26, 139204.CrossRefGoogle Scholar
Rouse, G.W. and Pleijel, F. (2001) Polychaetes. Oxford: Oxford University Press.Google Scholar
Shimodaira, H. and Hasegawa, M. (1999) Multiple comparisons of Log-likelihoods with applications to phylogenetic inference. Molecular Biology and Evolution 16, 11141116.CrossRefGoogle Scholar
Swofford, D.L. (2002) PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods). Version 4. Sunderland, MA: Sinauer Associates.Google Scholar
Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. and Higgins, D.G. (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25, 48764882.CrossRefGoogle ScholarPubMed
Turbeville, J.M., Field, K.G. and Raff, R.A. (1992) Phylogenetic position of phylum Nemertini, inferred from 18S-ribosomal-RNA sequences—molecular data as a test of morphological character homology. Molecular Biology and Evolution 9, 235249.Google ScholarPubMed
Ward, M.E., Jenkins, C.D. and Van Dover, C.L. (2003) Functional morphology and feeding strategy of the hydrothermal vent polychaete Archinome rosacea (family Archinomidae). Canadian Journal of Zoology 81, 582590.CrossRefGoogle Scholar