Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-22T17:15:00.943Z Has data issue: false hasContentIssue false

Photosynthesis and Pigments Influenced By Light Intensity and Salinity in the Halophile Dunaliella Salina (Chlorophyta)

Published online by Cambridge University Press:  11 May 2009

Laurel A. Loeblich
Affiliation:
Department of Marine Biology, Bldg. 311, Ft. Crockett, Texas A & MUniversity, Galveston, Texas 77550

Extract

Dunal (1837) originally described the taxon now known as Dunaliella salina (Dunal) Teodoresco, 1905, as consisting of spherical or elliptical cells, red-orange to rust coloured. Teodoresco, in his definition of the species (1905) stated that the zoospores had a green chromatophore but in aged zoospores the entire body, including chromatophore, was red. Thus, by definition, any isolate of Dunaliella which is not capable of turning redorange to rust coloured should not be considered D. salina. Several strains have been reported in the literature under the name D. salina but do not meet the aforementioned criteria. These include UTEX 200 (= Cambridge 19/3), Mil'ko's strain (Mil'ko, 1963 a, b) and Strain No. 6 used by Mironyuk (Drokova, 1970; Drokova, Popova & Tupik, 1964; Drokova & Popova, 1973, 1974; Mironyuk 1969a, b; Mironyuk & Einor, 1968).

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aasen, A. J., Eimiigellen, K. E. & Liaaen-Jensen, S., 1969. An extreme source of β-carotene. Acta chemica scandinavica, 23, 25442545.CrossRefGoogle ScholarPubMed
Appleman, D., Fulco, A. J. & Shugarman, P. M., 1966. Correlation of a-linolenate to photosynthetic O2 production in Chlorella. Plant Physiology, 41, 136142.CrossRefGoogle Scholar
Blinks, L. R., 1954. The photosynthetic function of pigments other than chlorophyll. Annual Review of Plant Physiology, 5, 93114.CrossRefGoogle Scholar
Blum, H. F. & Fox, D. L., 1933. Light responses in the brine flagellate Dunaliella salina with respect to wavelength. University of California Publications in Physiology, 8, 2130.Google Scholar
Claes, H. & Nakayama, T. O. M., 1959. Das Photoxydative Ausbleichen von Chlorophyll in vitro in Gegenwart von Carotinen mit verschiedenen chromophoren Gruppen. Zeitschrift fur Naturforschung (B), 14b, 746747.CrossRefGoogle Scholar
Clarke, F. W., 1924. The data of geochemistry, 5th ed. Bulletin of the States Geological Survey, 695, 841 pp.Google Scholar
Clendenning, K. A., Brown, T. E. & Eyster, H. C., 1956. Comparative studies of photosynthesis in Nostoc muscorum and Chlorella pyrenoidosa. Canadian Journal of Botany, 34, 943966.CrossRefGoogle Scholar
Clendenning, K. A. & Haxo, F. T., 1956. Photosynthetic induction in marine algae. Canadian Journal of Botany, 34, 214230.CrossRefGoogle Scholar
Coombs, J., Spanis, C. & Volcani, B. E., 1967. Studies on the biochemistry and fine structure of silica shell formation in diatoms. Photosynthesis and respiration in silicon-starvation synchrony of Navicula pelliculosa. Plant Physiology, 42, 16071611.CrossRefGoogle ScholarPubMed
Czygan, F.-C. & Kalb, K., 1966. Untersuchungen zur Biogenese der Carotinoide in Trentepohlia aurea. Zeitschrift für Pflanzenphysiologie, 55, 5964.Google Scholar
Davies, B. H., 1965. Analysis of carotenoid pigments. In Chemistry and Biochemistry of Plant Pigments (ed. Goodwin, T. W.), pp. 489532. Academic Press.Google Scholar
Dolphin, W. D., 1970. Photoinduced carotenogenesis in chlorotic Euglena gracilis. Plant Physiology, 46, 685691.CrossRefGoogle ScholarPubMed
Drokova, I. G., 1970. [Some carotene-containing strains of the alga Dunaliella salina Teod.] Ukrainskii Botanichnii Zhurnal, 27, 370372.Google Scholar
Drokova, I. G. & Popova, R. T., 1973. [Comparative characteristic of carotene content of some strains of Dunaliella salina Teod. in a mass culture.] Ukrainskii Botanichnii Zhurnal, 30, 329331.Google Scholar
Drokova, I. G. & Popova, R. T., 1974. [Growing carotene-containing strains of the alga Dunaliella salina Teod.] Ukrainskii Botanichnii Zhurnal, 31, 649653.Google Scholar
Drokova, I. G., Popova, R. T. & Tupik, N. D., 1964. [Carotene content in Dunaliella salina Teod. algae under conditions of laboratory cultivation.] Ukrainskii Botanichnii Zhurnal, 21, 4449.Google Scholar
Droop, M. R., 1954. Conditions governing haematochrome formation and loss in the alga Haematococcus pluvialis Flotow. Archiv fur Microbiologie, 20, 391397.CrossRefGoogle Scholar
Dunal, F., 1837. Note sur les algues qui colorent en rouge certaines eaux des marais salants mediterraneans. Compte rendu hebdomadaire des seances de I'Academie des sciences, 15, 585587.Google Scholar
Emerson, R. & Lewis, C. M., 1943. The dependence of quantum yield of Chlorella photosynthesis on wavelength of light. American Journal of Botany, 30, 165170.CrossRefGoogle Scholar
Eppley, R. W. & Sloan, P. R., 1965. Carbon balance experiments with marine phytoplankton. Journal of the Fisheries Research Board of Canada, 22, 10831097.CrossRefGoogle Scholar
Foote, C. S., Chang, Y. C. & Denny, R. W., 1970 a. Chemistry of singlet oxygen. X. Carotenoid quenching parallels biological protection. Journal of the American Chemical Society, 92, 52165218.CrossRefGoogle ScholarPubMed
Foote, C. S., Chang, Y. C. & Denny, R. W., 1970 b. Chemistry of singlet oxygen. XI. Cis-trans isomerization of carotenoids by singlet oxygen and a probable quenching mechanism. Journal of the American Chemical Society, 92, 52185219.CrossRefGoogle Scholar
Frank, G. & Wegmann, K., 1974. Physiology and biochemistry of glycerol biosynthesis in Dunaliella. Biologisches Zentralblatt, 93, 707723.Google Scholar
Hager, A. & Meyer-Bertenrath, T., 1966. Die Isolierung und quantitative Bestimmung der Carotinoide und Chlorophyll von Blattern, Algen und isolierten chloroplasten mit Hilfe dunnschichtchromatographischer Methoden. Planta, 69, 198217.CrossRefGoogle Scholar
Halldal, P., 1964. Ultraviolet action spectra of photosynthesis and photosynthetic inhibition of a green and red alga. Physiologia plantarum, 17, 414421.CrossRefGoogle Scholar
Halldal, P., 1969. Automatic recording of action spectra of photobiological processes, spectrophotometric analyses, fluorescence measurements and recording of the first derivative of the absorption curve in one simple unit. Photochemistry and Photobiology, 10, 2334.CrossRefGoogle ScholarPubMed
Haxo, F. T., 1960. The wavelength dependence of photosynthesis and the role of accessory pigments. In Comparative Biochemistry of Photoreactive Systems (ed. Allen, M. B.), pp. 339360. Academic Press.Google Scholar
Haxo, F. T., 1970. Photosynthetic action spectra of marine phytoplankton 1966–1969. Report. Scripps Institution of Oceanography, no. 70–12, 13 pp.Google Scholar
Haxo, F. T. & Blinks, L. R., 1950. Photosynthetic action spectra of marine algae. Journal of General Physiology, 33, 389442.CrossRefGoogle ScholarPubMed
Jeffrey, S. W., 1961. Paper-chromatographic separation of chlorophylls and carotenoids from marine algae. Biochemical Journal, 80, 336342.CrossRefGoogle ScholarPubMed
Johnson, M., Johnson, J., Macelroy, R. D., Speer, H. L. & Bruff, B., 1968. Effects of salt on the halophilic alga Dunaliella viridis. Journal of Bacteriology, 95, 14611468.CrossRefGoogle ScholarPubMed
Krinsky, N. I., 1968. The protective function of carotenoid pigments. Photophysiology, 3, 123195.CrossRefGoogle Scholar
Krinsky, N. I., 1971. Function. In Carotenoids (ed. Isler, O.), pp. 669716. Basle, Switzerland: Birkhauser Verlag.CrossRefGoogle Scholar
Krinsky, N. I., 1978. Non-photosynthetic functions of carotenoids. Philosophical Transactions of the Royal Society (B), 284, 581590.Google Scholar
Lerche, W., 1937. Untersuchungen über Entwicklung und Fortpflanzung in der Gattung Dunaliella. Archiv fiir Protistenkunde, 88, 236268.Google Scholar
Loeblich, L. A., 1969. Aplanospores of Dunaliella salina (Chlorophyta). Journal of Protozoology, 16, 2223.Google Scholar
Loeblich, L. A., 1970. Growth limitation of Dunaliella salina by CO2 at high salinity. Journal of Phycology, 6, 9.Google Scholar
Loeblich, L. A., 1972. Studies on the Brine Flagellate Dunaliella salina. Ph.D. thesis, University of California, San Diego.Google Scholar
Mackinney, G. & Chichester, C. O., 1960. Biosynthesis of carotenoids. In Comparative Biochemistry of Photoreactive Systems (ed. Allen, M. B.), pp. 205214. Academic Press.Google Scholar
Mathews-Roth, M. M. & Krinsky, N. I., 1970. Failure of conjugated octaene carotenoids to protect a mutant of Sarcina lutea against lethal photosensitization. Photochemistry and Photobiology, 11, 555557.CrossRefGoogle ScholarPubMed
Mil'ko, E. S., 1963 a. Effect of various environmental factors on pigment production in the alga Dunaliella salina. Mikrobiologiya, 32, 256262.Google Scholar
Mil'ko, E. S., 1963 b. Izuchenie fiziologii i pigmentoobrazovaniia zelenoi vodorosli Dunaliella. Avtoreferat dissertatsii na soiskanie uchenio stepeni kandidata biologisceskikh nauk. Moskva U.Google Scholar
Mironyuk, V. I., 1969 a. [Some peculiarities of the oxidation-reduction system of the unicellular alga Dunaliella salina Teod.] Ukrainskii Botanichnii Zhurnal, 26, 5459.Google Scholar
Mironyuk, V. I., 1969 b. [Catalase and peroxidase of Dunaliella salina Teod.] Ukrainskii Botanichnii Zhurnal, 26, 9295.Google Scholar
Mironyuk, V. I. & Einor, L. O., 1968. [Oxygen exchange and pigment content in various forms of Dunaliella salina Teod. under conditions of increasing NaCl content.] Gidrobiologichnii Zhurnal, 4, 2329.Google Scholar
Myers, J. & Graham, J.-R., 1963. Further improvements in stationary platinum electrode of Haxo and Blinks. Plant Physiology, 38, 15.CrossRefGoogle ScholarPubMed
Prior, B. A., 1978. Properties of two halophilic bacteria from a salt pan. Water S. A., 4, 119124.Google Scholar
Ryther, J. H., 1956. The measurement of primary production. Limnology and Oceanography, 1, 7284.CrossRefGoogle Scholar
Shibata, K., Benson, A. A. & Calvin, M., 1954. The absorption spectra of suspensions of living microorganisms. Biochimica et biophysica acta, 15, 461470.CrossRefGoogle Scholar
Strickland, J. D. H. & Parsons, T. R., 1965. A manual of sea water analysis, 2nd ed. Bulletin. Fisheries Research Board of Canada, no. 125, 310 pp.Google Scholar
Teodoresco, E. C., 1905. Organisation et developpement du Dunaliella, nouveau genre de Volvocacée-Polyblepharidee. Beihefte zum Botanisches Zentralblatt, 18, 215232.Google Scholar
Tischer, J., 1944. Über die Carotinoide von Hamatococcus pluvialis. Ill (Carotinoide der Süsswasseralgen. IX. Teil). Hoppe-Seyler's Zeitschrift für physiologische Chemie, 281, 143155.CrossRefGoogle Scholar
Umbreit, W. W., Burris, R. H. & Stauffer, J. F., 1964. Manometric Techniques: a Manual Describing Methods Applicable to the Study of Tissue Metabolism, 4th ed. iii, 305 pp. Minneapolis: Burgess.Google Scholar