Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-19T03:47:20.825Z Has data issue: false hasContentIssue false

Pairing behaviour, reproduction and diet in the deep-sea holothurian genus Paroriza (Holothurioidea: Synallactidae)

Published online by Cambridge University Press:  11 May 2009

P.A. Tyler
Affiliation:
Department of Oceanography, The University, Southampton, SO9 5NH
C.M. Young
Affiliation:
Division of Marine Science, Harbor Branch Oceanographic Institution, 5600 Old Dixie Highway, Fort Pierce, FL 34946, USA
D.S.M. Billett
Affiliation:
Institute of Oceanographic Sciences Deacon Laboratory, Wormley, Godalming, Surrey, GU8 5UB
L.A. Giles
Affiliation:
Department of Oceanography, The University, Southampton, SO9 5NH

Abstract

Deep-sea holothurians of the genus Paroriza (Family Synallactidae) have often been observed or photographed in pairs or triplets. Observations of tracks on the sea floor suggest that pairs may remain together for some time. We explored the reasons for pairing in a study of reproductive condition and diet, using animals collected by trawl from the bathyal and abyssal north-east Atlantic and by manned submersible from the bathyal slope of the Bahamas. Both species of Paroriza studied were found to be simultaneous hermaphrodites producing yolky oocytes. Oocytes of Paroriza pollens were about 350μm in diameter, whereas those of P. prouhoi were up to 450μm. Examination of oocyte size-frequency distributions suggests that reproduction is continuous for both species. Neither mean oocyte size, nor shape of the oocyte size-frequency distribution differed significantly between paired and unpaired P. pallens collected during the same season. These deposit-feeding holothurians appear to take food from the nutrient-rich phytodetrital layers on the surface of the sediment. Because their food resources are probably not patchy on small scales, the observed pairs are not likely to be feeding aggregations. We hypothesize that pairing increases the likelihood of external fertilization and that spawning in these species may be induced at any time by the presence of a conspecific rather than by seasonal cues.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Billett, D.S.M., 1991. Deep-sea holothurians. Oceanography and Marine Biology. Annual Review. London, 29, 259317.Google Scholar
Billett, D.S.M. & Hansen, B., 1982. Abyssal aggregations of Kolga hyalina Danielssen and Koren (Echinodermata: Holothurioidea) in the north-east Atlantic Ocean: a preliminary report. Deep-Sea Research, 29A, 799818.CrossRefGoogle Scholar
Billett, D.S.M., Lampitt, R.S., Rice, A.L. & Mantoura R.F.C., 1983. Seasonal sedimentation of phytoplankton to the deep-sea benthos. Nature, London, 302, 520522.CrossRefGoogle Scholar
Billett, D.S.M., Llewellyn, C. & Watson, J., 1988. Are deep-sea holothurians selective feeders? In Echinoderm biology (ed. R.D., Burkeet al.), pp. 421429. Rotterdam: A.A. Balkema.Google Scholar
Conand, C., 1981. Sexual cycle of three commercially important holothurian species (Echinodermata) from the lagoon of New Caledonia. Bulletin of Marine Science, 31, 523543.Google Scholar
Denny, M. & Shibata, M., 1989. Consequences of surf zone turbulence for settlement and external fertilization. American Naturalist, 134, 859889.CrossRefGoogle Scholar
Eckelbarger, K.J., Young, C.M. & Cameron, J.L., 1989a. Ultrastructure and development of dimorphic sperm in the abyssal echinoid Phrissocystis multispina (Echinodermata: Echinoidea); implications for deep sea reproductive biology. Biological Bulletin. Marine Biological Laboratory, Woods Hole, 176, 257271.CrossRefGoogle ScholarPubMed
Eckelbarger, K.J., Young, C.M. & Cameron, J.L., 1989b. Modified sperm in echinoderms from the bathyal and abyssal zones of the deep sea. In Reproduction, genetics and distributions of marine organisms (ed. J.S., Ryland and P.A., Tyler), pp. 6774. Fredensborg: Olsen & Olsen.Google Scholar
Feral, J.-P. & Massin, C., 1982. Digestive systems: Holothuroidea. In Echinoderm nutrition (ed. M., Jangoux and J.M., Lawrence), pp. 191212. Rotterdam: A.A. Balkema.Google Scholar
Fujioka, K., Taira, A., Kobayashi, K., Nakamura, K., Iiyama, T., Cadet, J.-P., Lallemand, S. & Girard, D., 1987. 6000 m deep: a diving trip to the Japanese trenches. Tokyo: University of Tokyo Press, IFREMER and CNRS.Google Scholar
Gage, J.D. & Tyler, P.A., 1982. Growth and reproduction of the deep-sea brittlestar Ophiomusium lymani Wyville Thomson. Oceanologica Acta, 5, 7383.Google Scholar
Gage, J.D. & Tyler, P.A., 1991. Deep-sea biology: a natural history of organisms at the deep-sea floor. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Grassle, J.F., Sanders, H.L., Hessler, R.R., Rowe, G.T. & McLellan, T., 1975. Pattern and zonation: a study of the bathyal megafauna using the research submersible ‘Alvin’. Deep-Sea Research, 22, 457481.Google Scholar
Gutt, J. & Piepenburg, D., 1991. Dense aggregations of three deep-sea holothurians in the southern Weddell Sea, Antarctica. Marine Ecology Progress Series, 68, 277285.CrossRefGoogle Scholar
Hansen, B., 1975. Systematics and biology of the deep-sea holothurians. Part 1. Elasipoda. Galathea Report, 13, 1262.Google Scholar
Heezen, B.C. & Hollister, C.D., 1971. The face of the deep. Oxford: Oxford University Press.Google Scholar
Hérouard, E., 1923. Holothuries provenant des campagnes des yachts ‘Princesse-Alice’ et ‘Hirondelle II’ (1898–1915), Résultats des Campagnes Scientifiques Accomplies sur son Yacht par Albert I”, Prince Souverain de Monaco, 66, 1163.Google Scholar
Khripounoff, A. & Sibuet, M., 1980. La nutrition d'echinodermes abyssaux. I. Alimentation des holothuries. Marine Biology, 60, 1726.CrossRefGoogle Scholar
Koehler, R., 1896. Echinodermes. In Résultats scientifiques de la campagne du ‘Caudan’ dans le Golfe de Gascogne. Annales de l'Université de Lyon, pp. 33127. Paris: Masson et Cie.Google Scholar
Lampitt, R.S., 1985. Evidence for the seasonal deposition of detritus to the deep-sea floor and its subsequent resuspension. Deep-Sea Research, 32, 885897.CrossRefGoogle Scholar
Mauviel, A. & Sibuet, M., 1985. Répartition des traces animales et importance de la bioturbation In Peuplements profonds du Golfe de Gascogne: campagnes BIOGAS (ed. L., Laubier and C., Monniot), pp. 157173. Brest: IFREMER.Google Scholar
Merrett, N. & Marshall, N.B., 1981. Observations on the ecology of deep-sea bottom-living fishes collected off northwest Africa (08°–27°N). Progress in Oceanography, 9, 185244.CrossRefGoogle Scholar
Mortensen, Th., 1927. Handbook of echinoderms of the British Isles. Oxford: Oxford University Press.CrossRefGoogle Scholar
Pennington, J.T., 1985. The ecology of fertilization of echinoid eggs: the consequences of sperm dilution, adult aggregation, and synchronous spawning. Biological Bulletin. Marine Biological Laboratory, Woods Hole, 169, 417430.CrossRefGoogle ScholarPubMed
Rice, A.L., Aldred, R.G., Darlington, E. & Wild, R.A., 1982. The quantitative estimation of the deep-sea megabenthos; a new approach to an old problem. Oceanologica Acta, 5, 6372.Google Scholar
Run, J.-Q., Chen, C.-P., Chang, K.-H. & Chia, F.-S., 1988. Mating behaviour and reproductive cycle of Archaster typicus (Echinodermata: Asteroidea). Marine Biology, 99, 247253.CrossRefGoogle Scholar
Sibuet, M., 1977. Répartition et diversité des echinodermes (Holothurides-Astérides) en zone profonde dans le Golfe de Gascogne. Deep-Sea Research, 24, 549563.CrossRefGoogle Scholar
Sokal, R.R. & Rohlf, F.J., 1981. Biometry. New York: W.H. Freeman.Google Scholar
Tyler, P. A., 1986. Studies of a benthic time series: reproductive biology of benthic invertebrates in the Rockall Trough. Proceedings of the Royal Society of Edinburgh, 88B, 175190.Google Scholar
Tyler, P.A., 1988. Seasonality in the deep sea. Oceanography and Marine Biology. Annual Review. London, 26, 227258.Google Scholar
Tyler, P.A. & Billett, D.S.M., 1988. The reproductive ecology of elasipodid holothurians from the N.E. Atlantic. Biological Oceanography, 5, 273296.Google Scholar
Tyler, P. A., Billett, D.S.M. & Gage, J.D., 1987. The ecology and reproductive biology of Cherbonniera utriculus and Molpadia blakei from the N.E. Atlantic. Journal of the Marine Biological Association of the United Kingdom, 67, 385397.CrossRefGoogle Scholar
Tyler, P.A. & Gage, J.D., 1982. The reproductive biology of Ophiacantha bidentata (Echinodermata: Ophiuroidea) from the Rockall Trough. Journal of the Marine Biological Association of the United Kingdom, 62, 4555.CrossRefGoogle Scholar
Tyler, P.A., Gage, J.D. & Billett, D.S.M., 1985a. Life-history biology of Peniagone azorica and P. diaphana (Echinodermata: Holothurioidea) from the north-east Atlantic Ocean. Marine Biology, 89, 7181.CrossRefGoogle Scholar
Tyler, P.A., Muirhead, A., Billett, D.S.M. & Gage, J.D., 1985b. Reproductive biology of the deep-sea holothurians Laetmogone violacea and Benthogone rosea (Elasipoda: Holothurioidea). Marine Ecology Progress Series, 23, 269277.CrossRefGoogle Scholar
Vogel, H., Czihak, G., Chang, P. & Wolf, W., 1982. Fertilization kinetics of sea urchin eggs. Mathematical Bioscience, 58, 189216.CrossRefGoogle Scholar
Young, C.M., Tyler, P.A., Cameron, J.L. & Rumrill, S.S., in press. Seasonal breeding aggregations in low-density populations of the bathyal echinoid Stylocidaris lineata. Marine Biology.Google Scholar