Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-22T18:44:01.075Z Has data issue: false hasContentIssue false

Oxygen Production by the Diatom Coscinodiscus Excentricus Ehr. in Relation to Submarine Illumination in the English Channel

Published online by Cambridge University Press:  11 May 2009

Penelope M. Jenkin
Affiliation:
Department of Zoology, Bristol University

Extract

1. A method, due to Poole & Atkins, is described for computing the total available energy at any depth in the sea, in joules or g.-cal.

2. The oxygen production of pure cultures of the diatom Coscinodiscus excentricus Ehr. was measured by the Winkler method after exposure of the diatoms in bottles at known depths in the sea. 3. The results of simultaneous measurements of oxygen production and of energy are given for 6 days in July and August 1933 and 1934.

4. Factors, other than light, that might affect the rate of oxygen production in the experiments are discussed and shown to be negligible. It is assumed that diatoms can use energy for photosynthesis equally well in all parts of the visible spectrum.

5. When the energy flux during the exposures is less than 75 joules or i-8 g.-cal. per cm.2 per hr., the oxygen production is directly proportional to the energy. The utilization of the available energy then amounts to about 7%.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1937

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbot, C. G., 1929. Optical Society of America Committee, on “The Unit of Photographic Intensity”. Quoted in 7th Int. Congr. Photogr. London, pp. 152–61.Google Scholar
Allen, E. J. & Nelson, E. W., 1910. On the artificial culture of marine plankton organisms. Journ. Mar. Biol. Assoc., Vol. VIII, pp. 421–74.CrossRefGoogle Scholar
Atkins, W. R. G., 1923. The silica content of some natural waters and of culture media. Journ. Mar. Biol. Assoc., Vol. XIII, pp. 151–9.CrossRefGoogle Scholar
Atkins, W. R. G. & Poole, H. H., 1930. The photo-electric recording of daylight. Nature, Lond., Vol. 125, pp. 305–6.CrossRefGoogle Scholar
Atkins, W. R. G. & Poole, H. H., 1931a. Photo-electric measurements of illumination in relation to plant distribution. Pt. 4. Sci. Proc. R. Dublin Soc., Vol. 20 (4), pp. 1348.Google Scholar
Atkins, W. R. G. & Poole, H. H., 1931b. A preliminary comparison of the neon-lamp and potentiometer methods of submarine photo-electric photometry. Journ. Mar. Biol. Assoc., Vol. XVII, pp. 617–31.CrossRefGoogle Scholar
Atkins, W. R. G. & Poole, H. H., 1933. The photo-electric measurement of the penetration of light of various wave-lengths into the sea and the physiological bearing of the results. Phil. Trans. Roy. Soc., B, Vol. 222, pp. 129–64.Google Scholar
Atkins, W. R. G. & Poole, H. H., 1936a. The photo-electric measurement of the diurnal and seasonal variations in daylight and a globe integrating photometer. Phil. Trans. Roy. Soc., A, Vol. 235, pp. 245–72.Google Scholar
Atkins, W. R. G. & Poole, H. H., 1936b. Photo-electric measurements of the luminous efficiency of day-light. Proc. Roy. Soc., B, Vol. 121, pp. 117.Google Scholar
Blackman, F. F., 1905. Optima and limiting factors. Ann. Bot., Vol. 19, pp. 281–95.CrossRefGoogle Scholar
Brandt, K. & Raben, E., 19191922. Zur Kenntnis der chemischen Zusammensetzung des Planktons und einiger Bodenorganismen. Wiss. Meeresuntersuch. Abt. Kiel, Bd. XIX, pp. 175210.Google Scholar
Buch, K., Harvey, H. W., Wattenberg, H. & Gripenberg, S., 1932. Über das Kohlensäuresystem im Meerwasser. Rapp. Proc. Verb. Cons. Int. Explor. Mer, Vol. LXXIX, pp. 870.Google Scholar
Clarke, G. L., 1933. Observations on the penetration of daylight into mid-atlantic and coastal waters. Biol. Bull., Vol. 65 (2), pp. 317–37.CrossRefGoogle Scholar
Clarke, G. L. & Oster, R. H., 1934. The penetration of the blue and red components of daylight into Atlantic coastal waters and its relation to phytoplankton metabolism. Biol. Bull., Vol. 67 (1), pp. 5975.CrossRefGoogle Scholar
Curtis, J. T. & Juday, C., 1937. Photosynthesis of algae in Wisconsin lakes. III. Observations in 1935. Int. Rev. Hydrobiol., Bd. 35, pp. 122–33.CrossRefGoogle Scholar
Gaarder, T. & Gran, H. H., 1927. Investigations of plankton in the Oslo Fjord. Rapp. Proc. Verb. Cons. Int. Explor. Mer, Vol. XLII, pp. 348.Google Scholar
Gaidukow, N., 1903. Weitere Untersuchung über den Einfluss farbigen Lichtes auf die Färbung der Oscillarien. Ber. Dtsch. Bot. Ges., Bd. XXI, pp. 484–92.Google Scholar
Harder, R., 1921. Kritische Versuche zu Blackmans Theorie der “begrenzenden Faktoren” bei der Kohlensäureassimilation. Jahrb. Wiss. Bot., Bd. 60, pp. 531–72Google Scholar
Harvey, H. W., 1934. Measurement of phytoplankton population. Journ. Mar. Biol. Assoc., Vol. XIX, pp. 761–73.CrossRefGoogle Scholar
Harvey, H. W., Cooper, L. H. N., Lebour, M. V. & Russell, F. S., 1935. Plankton production and its control. Journ. Mar. Biol. Assoc., Vol. XX, pp. 407–42.CrossRefGoogle Scholar
Höglund, H. & Landberg, S., 1936. Further investigations upon the photosynthesis of phyto-plankton by constant illumination. Rapp. Proc. Verb. Cons. Int. Explor. Mer, Vol. XCV, pp. 32–3.Google Scholar
Hoover, H. W., 1937. The dependence of carbon dioxide assimilation in a higher plant on wave-length of radiation. Smithson. Misc. Coll. Vol. 95 (21), pp. 113.Google Scholar
Jenkin, P. M., 1930. A preliminary limnological survey of Loch Awe (Argyllshire). Int. Rev. Hydrobiol., Bd. 24, pp. 2446.CrossRefGoogle Scholar
Juday, C. & Schomer, H. A., 1935. The utilization of solar radiation by algae at different depths in lakes. Biol. Bull., Vol. 69 (1), pp. 7581.CrossRefGoogle Scholar
Lebour, M. V., 1929. The Planktonic Diatoms of Northern Seas. Ray Soc. Lond.Google Scholar
Marshall, S. M. & Orr, A. P., 1928. The photosynthesis of diatom cultures in the sea. Journ. Mar. Biol. Assoc., Vol. XV, pp. 321–60.CrossRefGoogle Scholar
Montfort, C. & Neydel, K., 1928. Zur Beurteilung der “Inaktivierung” u. des “Zeitfaktors” der Lichtwirkung bei der Assimilation Stomata-freier SchattenFarne. Jahrb. Wiss. Bot., Bd. 68, pp. 801–43.Google Scholar
Nielsen, E. Steemann, 1932. Einleitende Untersuchungen über die Stoffproduktion des Planktons. Medd. Komm. Havundersøg. Kbh. Ser. Plankton, Vol. 11 (4), pp. 314.Google Scholar
Pettersson, H., 1934. A transparency-meter for sea water. Göteborg Vetensk. Samh. Handl., 5. B, Bd. 3 (8), pp. 317.Google Scholar