Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-03T15:37:00.407Z Has data issue: false hasContentIssue false

Oxygen binding of erythrocruorin and coelomic cell haemoglobin from the terebellid polychaete Neoamphitrite figulus related to some environmental factors

Published online by Cambridge University Press:  11 May 2009

Rufus M. G. Wells
Affiliation:
Department of Zoology, University of Auckland, Auckland, New Zealand
Lynda M. Warren
Affiliation:
Department of Zoology, Bedford College, Regent's Park, London, NW1 4NS

Extract

Measurements of pH, oxygen content, O2-combining capacity, and haemoglobin concentration were made for the vascular blood of the burrowing polychaete Neoamphitrite figulus in order to assess the role of its two respiratory pigments in respiration. The oxygen equilibrium curve of the erythrocruorin (extracellular haemoglobin) in the vessels was sigmoidal, having an n50 value of 1·5 and a low affinity for oxygen as determined by the P50 which was 26 mmHg at pH 7·31 and 18 °C. O2-binding by the erythrocruorin is sensitive to changes in pH (Δ log P50/Δ log pH = –0·24 to –0·29). The coelomic cell haemoglobin has a hyperbolic equilibrium curve (n50 = 1·0) and a high affinity for oxygen (P50 = 4·5 mmHg) independent of pH, suggesting an oxygen transfer system from the erythrocruorin to the coelomic cells.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chiancone, E., Brenowitz, M., Ascoli, F., Bonaventura, C. & Bonaventura, J., 1980. Amphitrite ornata erythrocruorin. I. Structural properties and characterization of subunit interactions. Biochimica et biophysica acta, 623, 146162.CrossRefGoogle ScholarPubMed
Chung, M. C. M. & Ellerton, H. D., 1979. The physicochemical and functional properties of extracellular respiratory haemoglobins and chlorocruorins. Progress in Biophysics and Molecular Biology, 35, 53102.CrossRefGoogle ScholarPubMed
Dacie, J. V. & Lewis, S. M., 1975. Practical Haematology, 5th ed. 629 pp. Edinburgh: Living-stone.Google Scholar
Dales, R. P., 1955. Feeding and digestion in terebellid polychaetes. Journal of the Marine Biological Association of the United Kingdom, 34, 5579.CrossRefGoogle Scholar
Dales, R. P., 1961. Oxygen uptake and irrigation of the burrow by three terebellid polychaetes: Eupolymnia, Thelepus and Neoamphitrite. Physiological Zoölogy, 94, 306311.Google Scholar
Dales, R. P., 1964. The coelomocytes of the terebellid polychaete Amphitrite johnstoni. Quarterly Journal of Microscopical Science, 105, 263279.Google Scholar
Economides, A. P. & Wells, R. M. G., 1975. The respiratory function of the blood of Neanthes (= Nereis) virens (Sars) (Polychaeta: Nereidae). Comparative Biochemistry and Physiology, 51 A, 219223.Google Scholar
Gutmann, I. & Wahlefeld, A. W., 1974. L-(+)-lactate determination with lactate dehydrogenase and NAD. In Methods of Enzymatic Analysis, vol. 3, 2nd ed. (ed. Bergmeyer, H. U.), pp. 14641468. Weinheim: Verlag Chemie.Google Scholar
Hill, A. V., 1910. The possible effects of the aggregation of haemoglobin on its dissociation curve. Journal of Physiology, 40, iv–vii.Google Scholar
Lykkeboe, G. & Johansen, K., 1978. An O2-Hb ‘paradox’ in frog blood? (n – values exceeding 4·0). Respiration Physiology, 35, 119127.CrossRefGoogle ScholarPubMed
Mangum, C. P., 1976 a. Primitive respiratory adaptations. In Adaptation to Environment (ed. Newell, R. C.), pp. 191278. London: Butterworths.CrossRefGoogle Scholar
Mangum, C. P., 1976 b. The oxygenation of hemoglobin in lugworms. Physiological Zoölogy, 49, 8599.Google Scholar
Mangum, C. P., Woodin, B. R., Bonaventura, C., Sullivan, B. & Bonaventura, J., 1975. The role of coelomic and vascular hemoglobin in the annelid family Terebellidae. Comparative Biochemistry and Physiology, 51 A, 281294.Google Scholar
Rasmussen, K. K. & Weber, R. E., 1979. Respiratory properties of erythrocruorin (extracellular haemoglobin) in the blood of the annelid Arenicola marina with special reference to the influences of salinity and temperature. Ophelia, 18, 151170.CrossRefGoogle Scholar
Rossi-Fanelli, A., Antonini, E. & Caputo, A., 1964. Haemoglobin and myoglobin. Advances in Protein Chemistry, 19, 74222.Google Scholar
Schöttler, U., 1979. On the anaerobic metabolism of three species of Nereis (Annelida). Marine Ecology ~ Progress Series, 1, 249254.Google Scholar
Terwilliger, R. C., 1974. Oxygen equilibria of the vascular and coelomic hemoglobins of the terebellid polychaete, Pista pacifica. Evidence for an oxygen transfer system. Comparative Biochemistry and Physiology, 48 A, 745755.Google Scholar
Tucker, V. A., 1967. Method for oxygen content and dissociation curves on microlitre blood samples. Journal of Applied Physiology, 23, 410414.CrossRefGoogle ScholarPubMed
Warren, L. M., Wells, R. M. G. & Weber, R. E., 1981. Erythrocruorins (extracellular haemoglobins) from the cirratulid polychaetes Cirriformia tentaculata (Montagu) and Cirratulus cirratus (Müller) with special reference to saturation dependent characteristics of the oxygen equilibria. Journal of Experimental Marine Biology and Ecology, 55, 1124.Google Scholar
Weber, R. E., 1972. On the variation in oxygen-binding properties in haemoglobins of lugworms (Arenicolidae, Polychaeta). In Proceedings of the Fifth European Marine Biology Symposium, Venice, 1970 (ed. B., Battaglia), pp. 231243. Padova: Piccin Editore.Google Scholar
Weber, R. E., 1978. Respiratory pigments. In Physiology of Annelids (ed. Mill, P. J.), pp. 393446. Academic Press.Google Scholar
Weber, R. E., 1980. Functions of invertebrate hemoglobins with special reference to adaptations to environmental hypoxia. American Zoologist, 20, 79101.Google Scholar
Weber, R. E., Lykkeboe, G. & Johansen, K., 1976. Physiological properties of eel haemoglobin. Hypoxic acclimation, phosphate effects and multiplicity. Journal of Experimental Biology, 64, 7588.Google Scholar
Weber, R. E., Mangum, C. P., Steinman, H., Bonaventura, C., Sullivan, B. & Bonaventura, J., 1977. Hemoglobins of two terebellid polychaetes: Enoplobranchus sanguineus and Amphitrite ornata. Comparative Biochemistry and Physiology, 56 A, 179187.Google Scholar
Wells, R. M. G., 1976. The oxygen affinity of chicken haemoglobin in whole blood and erythrocyte suspensions. Respiration Physiology 27, 2131.Google Scholar
Wells, R. M. G. & Dales, R. P., 1975. Haemoglobin function in Terebella lapidaria L., an intertidal terebellid polychaete. Journal of the Marine Biological Association of the United Kingdom, 55, 211220.Google Scholar
Wells, R. M. G., Jarvis, P. J. & Shumway, S. E., 1980. Oxygen uptake, the circulatory system, and haemoglobin function in the intertidal polychaete Terebella haplochaeta (Ehlers). Journal of Experimental Marine Biology and Ecology, 46, 255277.Google Scholar
Wells, R. M. G. & Pankhurst, N. W., 1980. An investigation into the formation of sulphide and oxidation compounds from the haemoglobin of the lugworm Abarenicola affinis (Ashworth). Comparative Biochemistry and Physiology, 66 C, 255259.Google Scholar