Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-03T15:13:44.021Z Has data issue: false hasContentIssue false

Osmoregulation in the Jaera Albifrons Group of Species [Isopoda, Asellota]

Published online by Cambridge University Press:  11 May 2009

M. B. Jones
Affiliation:
Department of Zoology, University College of Swansea

Extract

The jaera albifrons Leach group of species is a common component of estuarine faunas in Britain, where each species may occur in considerable numbers. Some members of the group also occur in less variable, marine localities in Britain and elsewhere, indicating that each species is capable of survival in a wide range of salinity combinations and that the group as a whole is euryhaline (see, for example, Naylor & Haahtela, 1966; Jones & Naylor, 1971). Naylor & Haahtela (1966) showed that the four species of jaera which occur in Britain occupy preferred areas on an estuarine shore such that jaera ischiosetosa Forsman is common on stones in areas affected by freshwater seepage, jaera albifrons Leach occurs on stones either in pools or in parts of the shore where water is retained (around M.t.l.), jaera praehirsuta Forsman occurs on Fucus serratus (L.), and jaera forsmani Bocquet can be found under stones around L.w.s.t.-l.w.n.t. where there is little retention of water. A later investigation by Jones & Naylor (1971) has shown that these habitat preferences persist throughout a 2-year period, and that each of the jaera species is capable of successful reproduction and development in a characteristic pattern of fluctuation in salinity, temperature and exposure to air

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bocquet, C. 1950. Le problème taxonomique des Jaera marina (Fabr.) (J. albifrons Leach). C. r. hebd. Seanc. Acad. Sci., Paris, Vol. 230, pp. 132–4.Google Scholar
Eltringham, S. K. 1964. Blood concentrations of Limnoria [Isopoda] in relation to salinity. J. mar. biol. Ass. U.K., Vol. 44, pp. 675–88.CrossRefGoogle Scholar
Frankenberg, D. & Burbank, W. D. 1963. A comparison of the physiology and ecology of the estuarine isopod Cyathura polita in Massachusetts and Georgia. Biol. Bull. mar. biol. Lab., Woods Hole, Vol. 125, pp. 8195.CrossRefGoogle Scholar
Hagerman, L. 1971. Osmoregulation and sodium Balance In Crangon Vulgaris (Fabricius) (Crustacea, Natantia) in varying salinities. Ophelia, Vol. 9, pp. 2130.CrossRefGoogle Scholar
Jones, M. B. 1972. Effects of salinity on the survival of the Jaera Albifrons group of species (Crustacea, Isopoda). (In Preparation.)CrossRefGoogle Scholar
Jones, M. B. & Fordy, M. R. 1971. A stereoscan electron microscope study of male reproductive characters in the Jaera Albifrons group of species. Mar. Biol., Vol. 10, pp. 265–71.CrossRefGoogle Scholar
Jones, M. B. & Naylor, E. 1971. Breeding and bionomics of the British members of the Jaera Albifrons group of species (Isopoda: Asellota). j. Zool, Lond., Vol. 165, pp. 183–99.CrossRefGoogle Scholar
Kinne, O. 1963. The effects of temperature and salinity on marine and brackish water animals. I. Temperature. Oceanogr. mar. Biol., Vol. 1, pp. 301–40.Google Scholar
Kinne, O. 1964. The effects of temperature and salinity on marine and brackish water animals. II. Salinity and temperature-salinity combinations. Oceanogr. Mar. Biol., Vol. 2, pp. 281339.Google Scholar
Kinne, O. 1966. Physiological aspects of animal life in estuaries with special reference to salinity. Neth. J. Sea Res., Vol. 3, pp. 222–44.CrossRefGoogle Scholar
Lockwood, A. P. M. 1959. The osmotic and ionic regulation of Asellus Aquaticus (L.). J. exp. Biol., Vol. 36, pp. 546–55.CrossRefGoogle Scholar
Lockwood, A. P. M. 1962. The osmoregulation of crustacea. Biol. Rev., Vol. 37, pp. 257305.CrossRefGoogle Scholar
Lockwood, A. P. M. 1968.aspects of the physiology of Crustacea. 328 pp. Edinburgh and London: Oliver and Boyd.Google Scholar
Mclusky, D. S. 1967. Some effects of salinity on the survival, moulting, and growth of Corophium Volutator (Amphipoda). J. mar. biol. Ass. U.K., Vol. 47, pp. 607–17.CrossRefGoogle Scholar
Naylor, E. 1972. British Marine Isopods. Linn. Soc. Synopses Br. Fauna. London: Academic Press. (In The Press.)Google Scholar
Naylor, E. & Haahtela, I. 1966. Habitat preferences and interspersion of species within the superspecies Jaera albifrons Leach (Crustacea: Isopoda). J. anim. Ecol., Vol. 35, pp. 209–16.CrossRefGoogle Scholar
Parry, G. 1953. Osmotic and ionic regulation in the isopod crustacean Ligia Oceanica. J. Exp. Biol., Vol. 3, pp. 567–74.CrossRefGoogle Scholar
Potts, W. T. W. & Parry, G. 1964. osmotic and ionic regulation in animals. 423 pp. Oxford: pergamon Press.Google Scholar
Prosser, C. L. & Brown, F. A. 1961. Comparative Animal Physiology. 688 pp. Philadelphia and London: Saunders.Google Scholar
Ramsay, J. A. 1949. A new method of freezing-point determination for small quantities. J. exp. Biol., Vol. 26, pp. 5764.CrossRefGoogle ScholarPubMed
Ramsay, J. A.& Brown, R. H. J. 1955. Simplified apparatus and procedure for freezing-point determinations upon Small volumes of fluid. J. scient. Instrum., Vol. 32, pp. 372–5.CrossRefGoogle Scholar
Riegel, J. A. 1959. Some aspects of osmoregulation in two species of sphaeromid isopod Crustacea. Biol. Bull. mar. biol. Lab., Woods Hole, Vol. 116, pp. 272–84.CrossRefGoogle Scholar
Robertson, J. D. 1960. Osmotic and ionic regulation. In T. H. Waterman (Ed.), The Physiology Of Crustacea, pp. 317–39. New York And London: Academic Press.Google Scholar
Schoffeniels, E. & Giixes, R. 1970. Osmoregulation in aquatic arthropods. in M. Florkin and B. T. Scheer (Eds.), Chemical Zoology, Vol. V. Arthropoda, Part A, pp. 255–86. New York and London: Academic Press.CrossRefGoogle Scholar
Todd, M. E. 1963. Osmoregulation in Ligia Oceanica and Idotea granulosa. J. exp. Biol., Vol. 40, pp. 381–92.CrossRefGoogle Scholar
Werntz, H. O. 1963. Osmotic regulation in marine and fresh-water gammarids (Amphipoda). Biol. Bull. mar. biol. Lab., Woods Hole, Vol. 124, pp. 225–39.CrossRefGoogle Scholar
Wilson, W. J. 1970. Osmoregulatory capabilities in isopods: Ligia occidentalis and Ligia pallasii. Biol. Bull. mar. biol. Lab., Woods Hole, Vol. 138, pp. 96–108.CrossRefGoogle Scholar