Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-22T17:54:28.723Z Has data issue: false hasContentIssue false

The organization of skeletal tissues in the spines of Echinus esculentus

Published online by Cambridge University Press:  11 May 2009

J. B. Pilkington
Affiliation:
Department of Zoology, University of Otago, Dunedin, New Zealand

Extract

The relationship between the calcite skeleton and associated cells in the spines of Echinus esculentus is described. The cell bodies lie in channels within the skeleton and cytoplasmic processes extend from them toward the calcite. Swollen regions of the cytoplasmic processes contain organelles such as mitochondria and various vesicles. The plasma membranes of the cytoplasmic processes appear to spread over the calcite surface which is thus topologically intracellular. A considerable portion of the stereom space is extracellular and contains an extracellular fluid and collagen fibres.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, J. R., 1944. The structure and chemical composition of the Golgi element. Q. Jl microsc. Sci., Vol. 85, pp. 171.Google Scholar
Benedetti, E. L. & Emmelot, P., 1967. Studies on plasma membranes. IV. The ultrastructural localisation and content of sialic acid in plasma membranes isolated from rat liver hepatoma. J. Cell Sci., Vol. 2, pp. 499512.CrossRefGoogle Scholar
Bennett, H. S., 1963. Morphological aspects of extracellular polysaccharides. J. Histochem. Cytochem., Vol. 11, pp. 1423.Google Scholar
Boolootian, R. A. & Giese, A. C., 1958. Coelomic corpuscles of echinoderms. Biol. Bull. mar. biol. Lab., Woods Hole, Vol. 115, pp. 5363.Google Scholar
Borig, P., 1933. Uber Wachstum und regeneration der Stacheln einiger Seeigel. Z. Morph. Okol. Tiere, Bd. 27, pp. 624–53.Google Scholar
Bradley, D. E., 1965. Replica and shadowing techniques. In Kay, D. H. (ed.), Techniques for Electron Microscopy. 2nd ed, 560 pp. Oxford: Blackwell.Google Scholar
Burstone, M. S. & Folk, J. E., 1956. Histochemical identification of aminopeptidase. J. Histochem. Cytochem., Vol. 4, pp. 217–26.CrossRefGoogle Scholar
Cook, G. M. W., Heard, D.H. & Seaman, G. V. F., 1961. Sialic acids and the electro-kinetic charge of the human erythrocyte. Nature, Lond., Vol. 191, pp. 44–9.CrossRefGoogle Scholar
Donnay, G. H., 1956. Biocrystallography. CarnegieInst. Wash. Yb., No. 55, pp. 205–6.Google Scholar
De Duve, C., 1963. The lysosome concept. In De Reuck, A. V. S. and Cameron, M. P. (eds). Lysosomes. Ciba Fdn Symp. London: J & A. Churchill.Google Scholar
De Duve, C. & Wattiaux, R., 1966. Functions of lysosomes. A. Rev. Physiol., Vol. 28, PP. 435–92.Google Scholar
Endean, R., 1966. The coelomocytes and coelomic fluids. In Boolootian, R. A. (ed). Physiology of Echinodermata. 822 pp. New York: John Wiley.Google Scholar
Garrido, J. & Blanco, J., 1947. Structure crystalline des piquants d'oursin. C. r. hebd. Seanc. Acad. Sci., Paris, T. 224, p. 485.Google Scholar
Holland, N. D., 1964. Cell proliferation in post-embryonic specimens of the purple sea urchin (Strongylocentrotus purpuratus): an autoradiographic investigation employing tritiated thymidine. Doctoral Dissertation, Stanford University.Google Scholar
Holland, N. D., Phillips, J. H. Jr., & Giese, A. C., 1965. An autoradiographic investigation of ceolomocyte production in the purple sea urchin (Strongylocentrotus purpuratus). Biol. Bull. mar. biol. Lab., Woods Hole, Vol. 128, pp. 259–70.CrossRefGoogle Scholar
Kawaguti, S. & Kamishima, Y., 1965. Electron microscopy on the spine muscle of the echinoid. Biol. J. Okayama Univ., Vol. 11, pp. 3140.Google Scholar
Kindred, J. E., 1924. The cellular elements in the perivisceral fluids of echinoderms. Biol. Bull. mar. biol. Lab., Woods Hole. Vol. 46, pp. 228–51.Google Scholar
Kindred, J. E., 1926. A study of the genetic relationships of the amoebocytes with spherules in Arbacia. Biol. Bull. mar. biol. Lab., Woods Hole. Vol. 50, pp. 147–54.CrossRefGoogle Scholar
Lentz, T. L., 1966. The Cell Biology of Hydra. 199 pp. Amsterdam: North Holland.Google Scholar
Lewis, P. R., 1958. A simultaneous coupling azo dye technique suitable for whole mounts. Q. Jl microsc. Sci., Vol. 99, pp. 6771.Google Scholar
Liebman, E., 1950. The leucocytes of Arbacia. Biol. Bull. mar. biol. Lab., Woods Hole, Vol. 98, pp. 4659.CrossRefGoogle ScholarPubMed
Lillie, R. D., 1965. Histopathologic Technic and Practical Histochemistry. 3rd ed., 715 pp. New York: McGraw-Hill.Google Scholar
Mortensen, Th., 1928–1951. A Monograph of the Echinoidea. Vols. I-IV. Copenhagen: C. A. Reitzel.Google Scholar
Moss, M. L. & Meehan, M. M., 1967. Sutural connective tissues in the test of an echinoid, Arbacia punctulata. Acta Anat., Vol. 66, pp. 279304.Google Scholar
Nachlas, M. M., Crawford, D. T. & Seligman, A. M., 1956. The histochemical demonstration of leucine aminopeptidase. J. Histochem. Cytochem., Vol. 5, pp. 264–78.Google Scholar
Nichols, D. & Currey, J. D., 1968. The Secretion, Structure And Strength Of Echinoderm Calcite. In McGee-Russell, S. M. and Ross, K. F. A. (eds), Cell Structure and its Interpretation, pp. 251–61. London: Edward Arnold.Google Scholar
Nicol, J. A. C., 1960. The Biology of Marine Animals. 699 pp. London: Pitman.Google Scholar
Nissen, H., 1963. Rontgengefugeanalyse am kalzit von Echinodermskeletten. Neues. Jb. Geol. Paldont. Abh., Bd. 117, pp. 230–4.Google Scholar
Okazaki, K., 1960. Skeleton formation of sea-urchin larvae. II. Organic matrix of the spicule. Embryologia, Vol. 5, pp. 283320.CrossRefGoogle Scholar
Pearse, A. G. E., 1960. Histochemistry, Theoretical and Applied. 2nd ed., 998 pp. London: J. & A. Churchill.Google Scholar
Raup, D. M., 1966. The endoskeleton. In Boolootian, R. A. (ed.), Physiology of Echinodermata. 822 pp. New York: John Wiley.Google Scholar
Riley, J. P. & Sinhaseni, P., 1957. The determination of ammonia and total anionic inorganic nitrogen in sea water. J. mar. biol. Ass. U.K., Vol. 36, pp. 161–8.Google Scholar
Schinke, H., 1950. Bildung und Ersatz der Zellelemente der Liebeshohlenflussigkeit von Psammechinus miliaris. Z. Zellforsch. mikros. Anat., Bd. 35, pp. 311–31.CrossRefGoogle ScholarPubMed
Southward, A. J. & Southward, E. C., 1968. On a whole animal method for the histochemical localization of enzymes under field conditions. J. mar. biol. Ass. U.K., Vol. 48, pp. 323–34.CrossRefGoogle Scholar
Theel, H., 1892. On the development of Echinocyamus pusillus. Nova Acta R. Soc. Scient. upsal., Vol. 15, pp. 37–9.Google Scholar
Theel, H., 1921. On amoebocytes and other coelomic corpuscles in the perivisceral cavity of echinoderms. III. Holothurids. Ark. Zool., Bd. v13 (25), pp. 140.Google Scholar
Towe, K. M., 1967. Echinoderm calcite: single crystal or polycrystalh'ne aggregate. Science, N.Y., Vol. 157, pp. 1048–50.Google Scholar
Travis, D. F., Francois, C. J., Bonar, L. & Glimcher, M. J., 1967. Comparative studies of the organic matrices of invertebrate mineralised tissues. J. Ultrastruct. Res., Vol. 18, pp. 519–50.CrossRefGoogle Scholar
West, C. D., 1937. Note on the crystallography of echinoderm skeletons. J. Palaeo nt. Vol. 11, pp. 458–9.Google Scholar