Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-03T14:57:56.895Z Has data issue: false hasContentIssue false

Ontogenetic trajectories in Callinectes danae (Crustacea: Brachyura): sex and age polymorphism

Published online by Cambridge University Press:  30 October 2017

R.A. Shinozaki-Mendes*
Affiliation:
Laboratório de Biologia Pesqueira, Unidade Acadêmica de Serra Talhada, Universidade Federal Rural de Pernambuco, Avenida Gregório Ferraz, S/N, José Tomé de Souza Ramos, Postal code 56909-535 Serra Talhada, PE, Brazil
R. Lessa
Affiliation:
Laboratório de Dinâmica de Populações, Depto. de Pesca e Aqüicultura, Universidade Federal Rural de Pernambuco, Av. Dom Manuel de Medeiros, s/n Dois Irmãos, Postal code 52171900 Recife, PE, Brazil
*
Correspondence should be addressed to: R.A. Shinozaki-Mendes, Laboratório de Biologia Pesqueira, Unidade Acadêmica de Serra Talhada, Universidade Federal Rural de Pernambuco, Avenida Gregório Ferraz, S/N, José Tomé de Souza Ramos, Postal code 56909-535 Serra Talhada, PE, Brazil email: [email protected]

Abstract

We analysed the morphological variations through geometric morphometric approaches of the dorsal and ventral views of growing male and female Callinectes danae Smith 1869, based on the hypothesis that swimming crabs present polymorphism during growth. Our research identified six instars for females, seven instars for males and one instar for unsexed individuals (young). The sixth instar of females and the seventh instar of males were composed of adults. We identified 20 landmarks from the dorsal view, and 16 landmarks from the ventral view. Based on canonical analysis and Procrustes distance, we observed the formation of clearly separated instars (both views), indicating a significant change during ontogeny, not only in the pubertal moult. The most prevalent changes occurred in the abdomen, with males thinning and females broadening the abdomen during growth. In the dorsal view, we observed a displacement of anterolateral spines to the posterior region throughout the growth period and that the anterolateral and frontal teeth of juveniles were more ornate than those of adults. The ontogenetic trajectories for males and females have similar origins and follow different directions over the instars, with maximum distance after the pubertal moult (P < 0.05).

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adams, D.C. and Nistri, A. (2010) Ontogenetic convergence and evolution of foot morphology in European cave salamanders (Family: Plethodontidae). BMC Evolutionary Biology 10, 216.Google Scholar
Alencar, C.E.R.D., Lima-Filho, P.A., Molina, W.F. and Freire, F.A.M. (2014) Sexual shape dimorphism of the mangrove crab Ucides cordatus (Linnaeus, 1763) (Decapoda, Ucididae) accessed through geometric morphometric. Scientific World Journal 2014, 18.Google Scholar
Baptista-Metri, C.M.A.A., Pinheiro, A., Blankensteyn, A. and Borzone, C.A. (2005) Biologia populacional e reprodutiva de Callinectes danae Smith (Crustacea, Portunidae), no Balneário Shangri-lá, Pontal do Paraná, Paraná, Brasil. Revista Brasileira de Zoologia 22, 446453.Google Scholar
Barría, E.M., Sepúlveda, R.D. and Jara, C.G. (2011) Morphologic variation in Aegla leach (Decapoda: Reptantia: Aeglidae) from Central-Southern Chile: interspecific differences, sexual dimorphism, and spatial segregation. Journal of Crustacean Biology 31, 231239.Google Scholar
Branco, J.O. and Masunari, S. (1992) Crescimento de Callinectes danae Smith (Decapoda, Portunidae) da lagoa da Conceição, Florianópolis, Santa Catarina, Brazil. Revista Brasileira de Zoologia 9, 5366.Google Scholar
Branco, J.O. and Thives, A. (1991) Relação peso/largura, fator de condição e tamanho de primeira maturação de Callinectes danae Smith, 1869 (Crustacea, Portunidae) no manguezal do Itacorubi, SC. Brazilian Archives of Biology and Technology 34, 415424.Google Scholar
Buckup, L. and Rossi, A. (1977) O gênero Aegla no Rio Grande do Sul, Brasil (Crustacea, Decapoda, Anomura, Aeglidae). Revista Brasileira de Biologia 37, 879892.Google Scholar
Cardini, A. and Elton, S. (2007) Sample size and sampling error in geometric morphometric studies of size and shape. Zoomorphology 126, 121134.Google Scholar
Carmona-Suárez, C.A. and Conde, J.E. (2002) Local distribution and abundance of swimming crabs (Callinectes spp. and Arenaeus cribrarius) on a tropical arid beach. Fishery Bulletin 100, 1125.Google Scholar
Duarte, R.C., Augusto, A.R., Flores, A.V. and Queiroga, H. (2014) Conspecific cues affect stage-specific molting frequency, survival, and claw morphology of early juvenile stages of the shore crab Carcinus maenas. Hydrobiologia 724, 5566.Google Scholar
Fujiwara, S. and Kawai, H. (2016) Crabs grab strongly depending on mechanical advantages of pinching and disarticulation of chela. Journal of Morphology 277, 12591272.Google Scholar
Furia, R.R., Santos, M.C.F., Botelho, E.R.R.O., Silva, C.G.M. and Almeida, L. (2008) Biologia pesqueira do siri-açú Callinectes danae Smith, 1869 (Crustacea: Portunidae) capturado nos manguezais do município de Caravelas (Bahia – Brasil). Boletim Técnico-Científico do CEPENE 16, 7584.Google Scholar
Gayanilo, J.R., Sparre, P. and Pauly, D. (2005) FAO-ICLARM Stock Assessment Tools II (FISAT II). Revised version. User's Guide. FAO Computerized Information Series (Fisheries). No. 8. 168 pp.Google Scholar
Giri, F. and Collins, P.A. (2004) A geometric morphometric analysis of two sympatric species of the family Aeglidae (Crustacea, Decapoda, Anomura) from the La Plata basin. Italian Journal of Zoology 71, 8588.Google Scholar
Giri, F. and Loy, A. (2008) Size and shape variation of two freshwater crabs in Argentinean Patagonia: the influence of sexual dimorphism, habitat, and species interactions. Journal of Crustacean Biology 28, 3745.Google Scholar
Hartnoll, R.G. (1969) Mating in Brachyura. Crustaceana 16, 161181.Google Scholar
Hartnoll, R.G. (1982) Growth. In Bliss, D.E. (ed.) The biology of Crustacea. London: Academic Press, Volume 1, pp. 111196.Google Scholar
Hartnoll, R.G. and Bryant, A.D. (2001) Growth to maturity of juveniles of the spider crabs Hyas coarctatus Leach and Inachus dorsettensis (Pennant) (Brachyura: Majidae). Journal of Experimental Marine Biology and Ecology 263, 143158.Google Scholar
Hepp, L.U., Fornel, R., Restello, R.M., Trevisan, A. and Santos, S. (2012) Intraspecific morphological variation in a freshwater crustacean Aegla plana (Anomura) in southern Brazil: effects of geographical segregation on carapace shape. Journal of Crustacean Biology 32, 511518.Google Scholar
Johnson, P.T. (1980) Histology of the blue crab Callinectes sapidus: a model for the Decapoda. New York, NY: Praeger, 440 pp.Google Scholar
Kendall, D.G. (1984) Shape manifolds, procrustean metrics, and complex projective spaces. Bulletin of the London Mathematical Society 16, 81121.Google Scholar
Klingenberg, C.P. (2008) Software MorphoJ. Manchester: Faculty of Life Sciences, University of Manchester. Available from http://www.flywings.org.uk.Google Scholar
Klingenberg, C.P. (2015) Analyzing fluctuating asymmetry with geometric morphometrics: concepts, methods, and applications. Symmetry 7, 843934.Google Scholar
Klingenberg, C.P. (2016) Size, shape, and form: concepts of allometry in geometric morphometrics. Development Genes and Evolution 226, 113137.Google Scholar
Marchiori, A.B., Fornel, R. and Santos, S. (2015) Morphometric variation in allopatric populations of Aegla platensis (Crustacea: Decapoda: Anomura): possible evidence for cryptic speciation. Zoomorphology 134, 4553.Google Scholar
Marochi, M.Z., Trevisan, A., Gomes, F.B. and Masunari, S. (2016) Dimorfismo sexual em Hepatus pudibundus (Crustacea, Decapoda, Brachyura). Iheringia: Série zoologia 106, e2016003.Google Scholar
Melo, G.A.S. (1996) Manual de identificação dos Brachyura (caranguejos e siris) do litoral brasileiro. São Paulo: Ed. Plêiade/FAPESP, 604pp.Google Scholar
Nevis, A.B., Martinelli, J.M., Carvalho, A.S.S. and Nahum, V.J.I. (2009) Abundance and spatial-temporal distribution of the family Portunidae (Crustacea, Decapoda) in the Curuçá estuary on the Northern coast of Brazil. Brazilian Journal of Aquatic Science and Technology 13, 7179.Google Scholar
Pinheiro, M.A.A. and Fransozo, A. (1993) Relative growth of the speckled swimming crab Arenaeus cribarius (Lamarck, 1818) (Brachyura, Portunidae), near Ubatuba, State of São Paulo, Brazil. Crustaceana 65, 377388.Google Scholar
Rohlf, F.J. (2006) Software tpsDig, digitize landmarks and outlines, version 2.10. Department of Ecology and Evolution, State University of New York at Stony Brook.Google Scholar
Rohlf, F.J. and Marcus, L.F. (1993) A revolution in morphometrics. Trends in Ecology and Evolution 8, 129132.Google Scholar
Rosenberg, M.S. (1997) Evolution of shape differences between the major and minor chelipeds of Uca pugnax (Decapoda: Ocypodidae). Journal of Crustacean Biology 17, 5259.Google Scholar
Rufino, M., Abelló, P. and Yule, A.B. (2009) Male and female carapace shape differences in Liocarcinus depurator (Decapoda, Brachyura): an application of geometric morphometric analysis to crustaceans. Italian Journal of Zoology 71, 7983.Google Scholar
Severino-Rodrigues, E., Pita, J.B. and Graça-Lopes, R. (2001) Pesca artesanal de siris (Crustacea, Decapoda, Portunidae) na região estuarina de Santos e São Vicente (SP), Brasil. Boletim do Instituto de Pesca 27, 719.Google Scholar
Sheets, H.D. and Zelditch, M.L. (2013) Studying ontogenetic trajectories using resampling methods and landmark data. Hystrix, The Italian Journal of Mammalogy 24, 6773.Google Scholar
Shinozaki-Mendes, R.A., Manghi, R.F. and Lessa, R. (2012a) The influence of environmental factors on the abundance of swimming crabs (Brachyura, Portunidae) in a tropical estuary, Northeastern Brazil. Crustaceana 85, 13171331.Google Scholar
Shinozaki-Mendes, R.A., Silva, A.A.G., Mendes, P.P. and Lessa, R. (2012b) Age and growth of Callinectes danae (Brachyura: Portunidae) in a tropical region. Journal of Crustacean Biology 32, 906915.Google Scholar
Silva, I.C., Alves, M.J., Paula, J. and Hawkins, S.J. (2010) Population differentiation of the shore crab Carcinus maenas (Brachyura: Portunidae) on the southwest English coast based on genetic and morphometric analyses. Scientia Marina 74(3), 435444.Google Scholar
Silva, I.S. and Paula, J. (2008) Is there a better chela to use for geometric morphometric differentiation in brachyuran crabs? A case study using Pachygrapsus marmoratus and Carcinus maenas. Journal of the Marine Biological Association of the United Kingdom 88, 941953.Google Scholar
Sparre, P. and Venema, S.C. (1997) Introduction to tropical fish stock assessment. Part 1. Manual. FAO Fisheries Technical Paper. N 306.1, Rev. 2. Rome: Food and Agriculture Organisation.Google Scholar
Van Engel, W.A. (1990) Development of the reproductively functional form in the male blue crab Callinectes sapidus. Bulletin of Marine Science 46, 1322.Google Scholar
Williams, A.B. (1974) The swimming crabs of the genus Callinectes (Decapoda: Portunidae). Fishery Bulletin 72, 685798.Google Scholar