Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-10T17:06:03.510Z Has data issue: false hasContentIssue false

Ontogenetic changes in habitat use and diet of the sea-star Heliaster helianthus on the coast of central Chile

Published online by Cambridge University Press:  19 October 2009

Tatiana Manzur
Affiliation:
Estación Costera de Investigaciones Marinas & Center for Advanced Studies in Ecology and Biodiversity (CASEB), Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
Mario Barahona
Affiliation:
Estación Costera de Investigaciones Marinas & Center for Advanced Studies in Ecology and Biodiversity (CASEB), Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
Sergio A. Navarrete*
Affiliation:
Estación Costera de Investigaciones Marinas & Center for Advanced Studies in Ecology and Biodiversity (CASEB), Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
*
Correspondence should be addressed to: S.A. Navarrete, Estación Costera de Investigaciones Marinas & Center for Advanced Studies in Ecology and Biodiversity (CASEB), Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile email: [email protected]

Abstract

Ontogenetic shifts in habitat use and diet are ubiquitous in nature and usually have profound consequences for the ecology and evolution of the species. In the case of species with strong interactions within their communities, such as keystone predators, understanding this kind of size-related change is critical to understand variation and connectivity among spatially distinct habitats of coastal communities. Yet the ecology of early life stages of marine benthic invertebrates, particularly asteroids, is poorly understood. Here we describe the results of surveys to characterize the habitat and quantify the abundance and diet of recruits of the sun star Heliaster helianthus, a keystone predator at rocky intertidal sites in central Chile. Our results support the existence of size-related, ontogenetic changes in habitat use and diet of this species. Recruits occupy boulders and crevices in the high or mid-high intertidal zones of wave-protected habitats and as they grow they move down towards lower tidal levels. Adults are characteristically found in the low intertidal zone of wave exposed and semi-exposed habitats. These changes in habitat use are accompanied by changes in diet composition and particularly by a broadening of the prey species incorporated in the diet. Since early stages of Heliaster appear to be most sensitive to predation and abiotic stress and since adults are such important predators in wave exposed rocky shores, knowledge of the basic ecology of early stages of this species is critical to fully understand the dynamics of intertidal communities.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Acosta, M.G. (1988) Aspectos autoecológicos de juveniles de Heliaster helianthus (Asteroidea: Forcipulatida) en el intermareal de Las Cruces, Chile Central. Tesis de Magister. Facultad de Ciencias, Universidad de Chile, Santiago, Chile.Google Scholar
Balch, T. and Scheibling, R.E. (2000) Temporal and spatial variability in settlement and recruitment of echinoderms in kelp beds and barrens in Nova Scotia. Marine Ecology Progress Series 205, 139154.CrossRefGoogle Scholar
Barker, M.F. (1977) Observations on the settlement of the brachiolaria larvae of Stichaster australis and Coscinasterias calamaria (Echinodermata: Asteroidea) in the laboratory and on the shore. Journal of Experimental Marine Biology and Ecology 30, 95108.CrossRefGoogle Scholar
Barker, M.F. (1979) Breeding and recruitment in a population of the New Zealand starfish Stichaster Australis. Journal of Experimental Marine Biology and Ecology 41, 195211.CrossRefGoogle Scholar
Barker, M. and Nichols, D. (1983) Reproduction, recruitment and juvenile ecology of the starfish, Asterias rubens and Marthasterias glacialis. Journal of the Marine Biological Association of the United Kingdom 63, 745765.CrossRefGoogle Scholar
Barrios, J.V., Gaymer, C.F., Vásquez, J.A. and Brokordt, K.B. (2008) Effect of the degree of autotomy on feeding, growth, and reproductive capacity in the multi-armed sea star Heliaster helianthus. Journal of Experimental Marine Biology and Ecology 361, 2127.CrossRefGoogle Scholar
Broitman, B.R., Navarrete, S.A., Smith, F. and Gaines, S.D. (2001) Geographic variation in southern Pacific intertidal communities. Marine Ecology Progress Series 224, 2134.CrossRefGoogle Scholar
Cancino, J. and Santelices, B. (1984) Importancia ecológica de los discos adhesivos de Lessonia nigrescens Bory (Phaeophyta) en Chile central. Revista Chilena de Historia Natural 57, 2333.Google Scholar
Cancino, J.M. and Castilla, J.C. (1988) Emersion behaviour and foraging ecology of the common Chilean clingfish Sicyases sanguineus (Pisces: Gobiesocidae). Journal of Natural History 22, 249261.CrossRefGoogle Scholar
Carlson, H.R. and Pfister, C.A. (1999) A seventeen-year study of the rose star Crossaster papposus population in a coastal bay in southeast Alaska. Marine Biology 133, 223230.CrossRefGoogle Scholar
Castilla, J.C. (1981) Perspectivas de investigación en estructura y dinámica de comunidades intermareales rocosas de Chile central. II. Depredadores de alto nivel trófico. Medio Ambiente (Chile) 5, 190215.Google Scholar
Castilla, J.C. and Paine, R.T. (1987) Predation and community organization on Eastern Pacific, temperate zone, rocky intertidal shores. Revista Chilena de Historia Natural 60, 131151.Google Scholar
Chia, F.S., Young, C.M. and McEuen, F.S. (1984) The role of larval settlement behavior in controlling patterns of abundance in echinoderms. Advances in Invertebrate Reproduction 3, 409424.Google Scholar
Dayton, P.K., Rosenthal, R.J., Mahen, L.C. and Antezana, T. (1977) Population structure and foraging biology of the predaceous Chilean asteroid Meyenaster gelatinosus and the escape response of its prey. Marine Biology 39, 361370.CrossRefGoogle Scholar
Erlandson, J., Porri, F. and McQuaid, C.D. (2008) Ontogenetic changes in small-scale movement by recruits of an exploited mussel: implications for the fate of larvae settling on algae. Marine Biology 153, 365373.CrossRefGoogle Scholar
Feder, H.M. (1959) The food of the starfish, Pisaster ochraceus, along the California coast. Ecology 40, 721724.CrossRefGoogle Scholar
Gayanilo, F., Sparre, P. and Pauly, D. (2006) FAO-ICLARM Stock Assessment Tools II (FiSAT II). Revised version. Rome: FAO, 168 pp. [User's Guide 2005. FAO Computerized Information Series (Fisheries) no. 8, revised version.]Google Scholar
Gaymer, C.F. and Himmelman, J.H. (2008) A keystone predatory sea star in the intertidal zone is controlled by a higher-order predatory sea star in the subtidal zone. Marine Ecology Progress Series 370, 143153.CrossRefGoogle Scholar
Gosselin, L.A. and Quian, P.Y. (1997) Juvenile mortality in benthic marine invertebrates. Marine Ecology Progress Series 146, 265282.CrossRefGoogle Scholar
Gotelli, N.J. and Colwell, R.K. (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters 4, 379391.CrossRefGoogle Scholar
Harley, C.D.G., Pankey, M.S., Wares, J.P., Grosberg, R.K. and Wonham, M.J. (2006) Color polymorphism and genetic structure in the sea star Pisaster ochraceus. Biological Bulletin. Marine Biological Laboratory, Woods Hole 211, 248262.CrossRefGoogle Scholar
Hiddink, J.G. (2003) Modelling the adaptive value of intertidal migration and nursery use in the bivalve Macoma balthica. Marine Ecology Progress Series 252, 173185.CrossRefGoogle Scholar
Himmelman, J.H. and Dutil, C. (1991) Distribution, population structure and feeding of subtidal seastars in the northern gulf of St. Lawrence. Marine Ecology Progress Series 76, 6172.CrossRefGoogle Scholar
Keough, M.J. and Butler, A.J. (1979) The role of asteroid predators in the organization of a sessile community on pier pilings. Marine Biology 51, 167177.CrossRefGoogle Scholar
Lawrence, J. and Vásquez, J.A. (1995) The effects of sublethal predation on the biology of echinoiderms. Oceanologica Acta 19, 431440.Google Scholar
Menge, B.A. (1972) Foraging strategy of a starfish in relation to actual prey availability and environmental predictability. Ecological Monograph 42, 2550.CrossRefGoogle Scholar
Menge, B.A. (1982) Effects of feeding on the environment: Asteroidea. In Jangoux, M. and Lawrence, J.M. (eds). Echinodem nutrition. Rotterdam: A.A. Balkema pp. 521551.Google Scholar
Menge, B.A., Berlow, E.L., Blanchette, C., Navarrete, S.A. and Yamada, S.B. (1994) The keystone species concept: variation in interaction strength in a rocky intertidal habitat. Ecological Monographs 64, 249286.CrossRefGoogle Scholar
Menge, B.A., Blanchette, C., Raimondi, P.T., Freidenburg, T.L., Gaines, S., Lubchenco, J., Lohse, D.P., Hudson, G., Foley, M.M. and Pamplin, J. (2004) Species interaction strength: testing model predictions along an upwellling gradient. Ecological Monographs 74, 663684.CrossRefGoogle Scholar
Menge, J.L. and Menge, B.A. (1974) Role of resource allocation, aggression and spatial heterogeneity in coexistence of two competing intertidal starfish. Ecological Monographs 44, 189209.CrossRefGoogle Scholar
Moksnes, P.O. (2002) The relative importance of habitat-specific settlement, predation and juvenile dispersal for distribution and abundance of young juvenile shore crabs Carcinus maenas L. Journal of Experimental Marine Biology and Ecology 271, 4173.CrossRefGoogle Scholar
Moreno, C.A., Asencio, G. and Ibañez, S. (1993) Patrones de asentamiento de Concholepas concholpeas (Brugiere) (Mollusca: Muricidae) en la zona intermareal rocosa de Valdivia, Chile. Revista Chilena de Historia Natural 66, 93101.Google Scholar
Muñoz, A.A. and Ojeda, F.P. (2000) Ontogenetic changes in the diet of the herbivorous Scartichtys viridis in a rocky intertidal zone in central Chile. Journal of Fish Biology 56, 986998.CrossRefGoogle Scholar
Navarrete, S.A., Broitman, B., Finke, G.R., Sotomayor, A., Venegas, R. and Wieters, E.A. (2002) Recruitment of barnacles and mussels in the southeast Pacific during and after the 1997–1998 El Niño. Limnology and Oceanography 47, 791802.CrossRefGoogle Scholar
Navarrete, S.A., Broitman, B. and Menge, B.A. (2008) Inter-hemispheric comparison of recruitment to intertidal communities: pattern persistence and scales of variation. Ecology 89, 13081322.CrossRefGoogle Scholar
Navarrete, S.A. and Castilla, J.C. (1990) Resource partitioning between intertidal predatory crabs: interference and refuge utilization. Journal of Experimental Marine Biology and Ecology 143, 101129.CrossRefGoogle Scholar
Navarrete, S.A. and Castilla, J.C. (2003) Experimental determination of predation intensity in an intertidal predator guild: dominant versus subordinate prey. Oikos 100, 251262.CrossRefGoogle Scholar
Navarrete, S.A. and Manzur, T. (2008) Individual- and population-level responses of a keystone intertidal predator to variation in prey productivity over geographic scales. Ecology 89, 20052018.CrossRefGoogle Scholar
Navarrete, S.A., Menge, B.A. and Daley, B.A. (2000) Species interactions in a rocky intertidal food web: prey or predation regulation of intermediate predators? Ecology 81, 22642277.CrossRefGoogle Scholar
Navarrete, S.A., Wieters, E., Broitman, B. and Castilla, J.C. (2005) Scales of benthic pelagic coupling and the intensity of species interactions: from recruitment limitation to top down control. Proceedings of the National Academy of Sciences of the United States of America 102, 1804618051.CrossRefGoogle ScholarPubMed
Paine, R.T. (1966) Food web complexity and species diversity. American Naturalist 100, 6575.CrossRefGoogle Scholar
Paine, R.T. (1969) The Pisaster–Tegula interaction: prey patches, predator food preference, and intertidal community structure. Ecology 50, 950961.CrossRefGoogle Scholar
Paine, R.T. (1976) Size-limited predation: an observational and experimental approach with Mytilus–Pisaster interaction. Ecology 57, 858873.CrossRefGoogle Scholar
Paine, R.T., Castilla, J.C. and Cancino, J. (1985) Perturbation and recovery patterns of starfish-dominated intertidal assemblages in Chile, New Zealand, and Washington State. American Naturalist 125, 679691.CrossRefGoogle Scholar
Prado, L. and Castilla, J.C. (2006) The bioengineer Perumytilus purpuratus (Mollusca: Bivalvia) in central Chile: biodiversity, habitat structural complexity and environmental heterogeneity. Journal of the Marine Biological Association of the United Kingdom 86, 15.CrossRefGoogle Scholar
Quinn, G.P. and Keough, M.J. (2002) Experimental design and data analysis for biologists. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Robles, C., Sherwood-Stephens, R. and Alvarado, M. (1995) Responses of a key intertidal predator to varying recruitment of its prey. Ecology 76, 565579.CrossRefGoogle Scholar
Rumrill, S.S. (1989) Population size-structure, juvenile growth, and breeding periodicity of the sea star Asterina miniata in Barkley Sound, British Columbia. Marine Ecology Progress Series 56, 3747.CrossRefGoogle Scholar
Sanford, E. and Menge, B.A. (2007) Reproductive output and consistency of source populations in the sea star Pisaster ochraceus. Marine Ecology Progress Series 349, 112.CrossRefGoogle Scholar
Santelices, B., Cancino, J., Montalva, S., Pinto, R. and Gonzalez, E. (1977) Estudios ecológicos en la zona costera afectada por contaminación del «Northern Breeze». II. Comunidades de playas de rocas. Medio Ambiente 2, 6583.Google Scholar
Scheibling, R.E. (1980) Abundance, spatial distribution and size structure of populations of Oreaster reticulatus (L.) (Echinodermata Asteroidea) in seagrass beds. Marine Biology 57, 95105.CrossRefGoogle Scholar
Sewell, M.A. and Watson, J.C. (1993) A ‘source’ for asteroid larvae?: recruitment of Pisaster ochraceus, Pycnopodia helianthoides and Dermasterias imbricata. Marine Biology 117, 387398.CrossRefGoogle Scholar
Sloan, N.A. (1980) Aspects of the feeding biology of asteroids. Oceanography and Marine Biology: an Annual Review 18, 57124.Google Scholar
Steger, R. (1987) Effects of refuges and recruitment on gonodactylid stomatopods, a guild of mobile prey. Ecology 68, 15201533.CrossRefGoogle Scholar
Tokeshi, M. (1989a) Development of a foraging model for a field population of the South American sun-star Heliaster helianthus. Journal of Animal Ecology 58, 189206.CrossRefGoogle Scholar
Tokeshi, M. (1989b) Feeding ecology of a size-structured predator population, the South American sun-star Heliaster helianthus. Marine Biology 100, 495505.CrossRefGoogle Scholar
Verling, E., Crook, A.C., David, K.A., Barnes, O. and Simon, S.C. (2003) Structural dynamics of a sea-star (Marthasterias glacialis) population. Journal of the Marine Biological Association of the United Kingdom 83, 583592.CrossRefGoogle Scholar
Viviani, C.A. (1978) Predación interspecífica, canibalismo y autotomía como mecanismo de escape en las especies de Asteroidea (Equinodermata) en el litoral del norte grande de Chile, Vol. Laboratorio de Ecología Marina, Universidad del Norte, Chile.Google Scholar
Wieters, E.A., Gaines, S.D., Navarrete, S.A., Blanchette, C. and Menge, B.A. (2008) Scales of dispersal and the biogeography of marine predator–prey interactions. American Naturalist 171, 405417.CrossRefGoogle ScholarPubMed
Witman, J.D., Genovese, S.J., Bruno, J.F., McLaughlin, J.F. and Pavlin, B. (2003) Massive prey recruitment and the control of rocky subtidal communities on large spatial scales. Ecological Monographs 73, 441462.CrossRefGoogle Scholar
Woodward, G., Speirs, D.C. and Hildrew, A.G. (2005) Quantification and resolution of a complex, size-structured food web. Advances in Ecological Research 36, 85135.CrossRefGoogle Scholar
Yamaguchi, M. (1974) Growth of juvenile Acanthaster planci (L.) in the laboratory. Pacific Science 28, 123138.Google Scholar