Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-22T19:03:46.511Z Has data issue: false hasContentIssue false

On the presence of vitellogenic substances in the starfish, Asterias rubens (L.)

Published online by Cambridge University Press:  11 May 2009

J. J. S. Broertjes
Affiliation:
Laboratory of Chemical Animal Physiology, State University of Utrecht, 8 Padualaan, 3508 TB Utrecht, The Netherlands
P. de Waard
Affiliation:
Laboratory of Chemical Animal Physiology, State University of Utrecht, 8 Padualaan, 3508 TB Utrecht, The Netherlands
P. A. Voogt
Affiliation:
Laboratory of Chemical Animal Physiology, State University of Utrecht, 8 Padualaan, 3508 TB Utrecht, The Netherlands

Extract

Homogenates of pyloric caeca, gonads, spermatozoa and eggs from the starfish Asterias rubens were fractionated by gel filtration chromatography.

It appeared that a glycolipoprotein fraction, present in oocytes and gonads of female animals, is absent in spermatozoa and gonads of male animals.

The possible role in vitellogenesis of this fraction and of a more omnipresent one is discussed.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Beuving, G. & Gruber, M. 1971. Isolation of phosvitin from plasma of estrogenized roosters. Biochimica et biophysica act a, 232, 524528.CrossRefGoogle ScholarPubMed
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248254.CrossRefGoogle ScholarPubMed
Broertjes, J. J. S. & Posthuma, G. 1978. Direct visualization of the haemal system in starfish by a staining procedure. Experientia, 34, 12431245.CrossRefGoogle Scholar
Broertjes, J. J. S.Posthuma, G.Den Breejen, P. & Voogt, P. A. 1980a. Evidence for an alternative transport route for the use of vitellogenesis in the sear-star Asterias rubens (L.). Journal of the Marine Biological Association of the United Kingdom, 60, 157162.CrossRefGoogle Scholar
Broertjes, J. J. S.Posthuma, G.Beijnink, F. B. & Voogt, P. A. 1980b. The admission of nutrients from the digestive system into the haemal channels in the sea-star Asterias rubens (L.). Journal of the Marine Biological Association of the United Kingdom, 60, 883890.CrossRefGoogle Scholar
Broertjes, J. J. S.Jens, J. N.Van Oudheusden, D.De Bruin, M. & Voogt, P. A. 1982. Demonstration of nutrient flow in the starfish Asterias rubens (L.) with I labelled proteins. Netherlands Journal of Zoology, 32, 472478.Google Scholar
Croisille, Y.Junera, H.Meusy, J. J. & Charniaux-Cotton, H. 1974. The female-specific protein (vitellogenic protein) in Crustacea with particular reference to Orchestia gammarella (Amphipoda). American Zoologist, 14, 12191228.CrossRefGoogle Scholar
De Chaffoy De Courcelles, D. & Kondo, M. 1980. Lipovitellin from the crustacean, Aremia salina. Biochemical analysis of lipovitellin complex from the yolk granules. Journal of Biological Chemistry, 255, 67276733.CrossRefGoogle ScholarPubMed
Deguchi, K.Kawashima, S.Ii, I. & Ueta, N. 1979. Water-soluble lipoproteins from yolk granules in sea urchin eggs. II. Chemical composition. Journal of Biochemistry, 85, 15191525.CrossRefGoogle ScholarPubMed
Engelmann, F. 1979. Insect vitellogenin: identification, biosynthesis, and role in vitellogenesis. Advances in Insect Physiology, 14, 49108.CrossRefGoogle Scholar
Fyffe, W. E. & O'Connor, J. 1974. Characterization and quantification of a crustacean lipovitellin. Comparative Biochemistry and Physiology, 47B, 851867.Google ScholarPubMed
Gruber, M.Bos, E. S. & Ab, G. 1976. Hormonal control of vitellogenin synthesis in avian liver. Molecular and Cellular Endocrinology, 5, 4150.CrossRefGoogle ScholarPubMed
Ii, I.Deguchi, K.Kawashima, S.Endo, S. & Ueta, N. 1978. Water-soluble lipoproteins from yolk granules in sea urchin eggs. I. Isolation and general properties. Journl of Biochemistry, 84, 737749.Google Scholar
Kanatani, H. 1975. Maturation-inducing substances in asteroid and echinoid oocytes. American Zoologist, 15, 493505.CrossRefGoogle Scholar
Lowry, O. H.Rosebrough, N. J.Farr, A. Z. & Randall, R. J. 1951. Protein measurement with Folin reagent. Journal of Biological Chemistry, 193, 265273.CrossRefGoogle Scholar
Malkin, L. I.Mangan, J. & Gross, P. R. 1965. A crystalline protein of high molecular weight from cytoplasmic granules in sea urchin eggs and embryos. Developmental Biology, 12, 520542.CrossRefGoogle ScholarPubMed
Marsh, J. B. 1965. Isolation and composition of a water-soluble lipoprotein from Arbacia eggs. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 129, 415.Google Scholar
Marsh, J. B. 1968. Isolation and composition of a low density lipoprotein from the eggs of Arbacia punctulata. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 135, 193199.CrossRefGoogle ScholarPubMed
Oudejans, R. C. H. M. & Van Der Sluis, I. 1979. Changes in the biochemical composition of the ovaries of the sea star Asterias rubens during its annual reproductive cycle. Marine Biology, 50, 255261.CrossRefGoogle Scholar
Ozaki, H. 1979. Yolk proteins of the sea urchin egg. American Zoologist, 19, 998.Google Scholar
Tong, H. K.Lee, K. H. & Wong, H. A. 1973. Interference by azide in the estimation of carbohydrates with anthrone. Analytical Biochemistry, 51, 390398.CrossRefGoogle ScholarPubMed
Van Handel, E. 1965. Microseparation of glycogen, sugars and lipids. Analytical Biochemistry, 11, 266271.CrossRefGoogle ScholarPubMed
Van Wilgenburg, M. G. M.Werkman, E. M. A.Van Gorkom, W. H. & Soons, J. B. J. 1981. Criticism of the use of Coomassie Brilliant Blue G-250 for the quantitative determination of proteins. Journal of Clinical Chemistry and Clinical Biochemistry, 19, 301304.Google ScholarPubMed
Vladescu, C.JMurariu, E.Cucu, C. & Serban, M. 1981. Sodium azide interference with phosphovanillin reagent during serum fat determination. Studii si cercatări de biochimie, 24, 195199.Google Scholar
Voogt, P. A. & Van Rheenen, J. W. A. 1979. Studies on the possible regulatory function of asterosaponins in oocyte maturation and early embryogenesis of Asterias rubens. International Journal of Invertebrate Reproduction, 1, 307316.CrossRefGoogle Scholar
Voogt, P. A. & Van Rheenen, J. W. A. 1982. Carbohydrate content and composition of asterosaponins from different organs of the sea star Asterias rubens: relation to their haemolytic activity and implications for their biosynthesis. Comparative Biochemistry and Physiology, 72B, 683688.Google Scholar
Wallace, R. A. 1978. Oocyte growth in nonmammalian vertebrates. In The Vertebrate Ovary (ed. Jones, R. E.) pp. 469502. Plenum Press.Google Scholar
Wallace, R. A. & Selman, K. 1981. Cellular and dynamic aspects of oocyte growth in teleosts. American Zoologist, 21, 325343.CrossRefGoogle Scholar
Zagalsky, P. F.Cheesman, D. F. & Ceccaldi, H. J. 1967. Studies on carotenoid-containing lipoproteins isolated from the eggs and ovaries of certain marine invertebrates. Comparative Biochemistry and Physiology, 22, 851871.CrossRefGoogle ScholarPubMed
Zøllner, N. & Kirsch, K. 1962. Ueber die quantitative Bestimmung von Lipoiden (Mikromethode) mittels der vielen natürlichen Lipoiden (alien bekannten Plasmalipoiden) gemeinsamen Sulfophosphovanillin Reaktion. Zeitschrift für diegesamte experimentelle Medizin, 135, 545561.CrossRefGoogle Scholar