Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-22T05:47:05.653Z Has data issue: false hasContentIssue false

On the Physiology of Amœboid Movement. I

Published online by Cambridge University Press:  11 May 2009

C. F. A. Pantin
Affiliation:
Assistant Physiologist at the Plymouth Laboratory.

Extract

Of the relation of amœboid movement to other forms of contractility, very little is known at present. Hypotheses have been advanced to explain the movement, but they differ widely among themselves, and are founded almost entirely on direct observations of the normal activities of amœba. More recently Loeb (24) (25) and others have tried to determine the rôle of various environmental factors, such as the presence of certain salts, in amœboid activity. It is on these lines that the present work is being conducted.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1923

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Allen, E. J., and Nelson, E. W. 1910. On the Artificial Culture of Marine Plankton Organisms. Quart. Journ., Mic. Soc., 55, Part 2, p. 361.Google Scholar
2Allen, E. J. 1914. On the Culture of Thalassiosira gravida, Cleve, in artificial Sea-water. Journ. Marine Biol. Assoc., X, No. 3, p. 417.CrossRefGoogle Scholar
3Atkins, W. R. G. 1922. Di Brom Thymol Sulphone Phthalein as a Reagent for determining the Hydrogen Ion Concentration of Living Cells. Journ. Marine Biol. Assoc., XII, No. 4, p. 781.Google Scholar
4Bayliss, W. M. 1920. Principles of General Physiology, 3rd edition, Longmans and Co., London.Google Scholar
5Carlson, A. J. 19051906. Osmotic Pressure and Heart Activity. Amer. Journ. Physiol., 15, p. 357.CrossRefGoogle Scholar
6Chambers, R. 19201921. Dissection Studies of Amœba. Proc. Soc. Exp. Biol. and Med., 18, p. 66.CrossRefGoogle Scholar
7Chambers, R. 1921. The Effect of experimentally induced changes in the consistency on Protoplasmic Movement. Proc. Soc. Exp. Biol. and Med., 19, No. 2, p. 87.CrossRefGoogle Scholar
8Clark, W. M. 1922. The Determination of Hydrogen Ions. 2nd edition. Williams and Wilkins and Co., Baltimore.Google Scholar
9Dellinger, O. P. 1906. Locomotion in Amœbæ and Allied forms. Journ. Exp. Zool., 3, p. 366.CrossRefGoogle Scholar
10Dixon, H. H. 1922. Practical Plant Biology. London.Google Scholar
11Fürth, O. 1922. Zur Theorie der Amöboiden Bewegung. Arch. Néerlandaises de Physiol., VII, p. 39.Google Scholar
12Gray, J. 1922. The Mechanism of Ciliary Movement. Proc. Royal Soc., B., 93, p. 104.Google Scholar
13Gray, J. 1922. The Mechanism of Ciliary Movement. II, The Effects of Ions on the Cell Membrane. Proc. Royal Soc., B., 93, p. 122.Google Scholar
14Greely, A. W. 1904. The Physical Structure of Protoplasm. Biol. Bull., VII, p. 3.Google Scholar
15De Haan, J. 1922. Mobilité amiboide et phagacytose. Arch. Néerlandaises de Physiol., VI, p. 388.Google Scholar
16Hartridge, H., and Peters, R. A. 1921. Surface Tension of Oil-water Interfaces. Journ. of Physiol., 54, p. xli.Google Scholar
17Homer, A. 1917. A Note on the use of Indicators for Colorimetric Determination of the Hydrogen Ion Concentration of Sera. Biochem. Journ., 11, p. 283.CrossRefGoogle ScholarPubMed
18Hyman, L. B. 19171918. Metabolic Gradients in Amœba. Journ. Exp. Zoo., 3, p. 336.Google Scholar
19Jacobs, M. H. 1920. To what extent are the Physiological Effects of Carbon Dioxide due to Hydrogen Ions? Amer. Journ. Physiol., 51, p. 321.CrossRefGoogle Scholar
20Jennings, H. S. 1904. Behaviour of the Lower Organisms. Carnegie Inst., Wash. Pub., 6th paper.Google Scholar
21Kite, G. L. 1913. The Physical Properties of Protoplasm. Amer. Journ. Physiol., 32, p. 146.CrossRefGoogle Scholar
22Lebour, M. V. 1917. The Microplankton of Plymouth Sound, etc. Journ. Marine Biol. Assoc., XI, No. 2, p. 133.CrossRefGoogle Scholar
23Loeb, J. 1922. Proteins and the Theory of Colloid Behaviour. 1st edition. McGraw-Hill Book Co., New York.CrossRefGoogle Scholar
24Loeb, L. 1921. Consistency of Protoplasm and the character of Amœboid Movements. Amer. Journ. Physiol., 55, p. 280.Google Scholar
25Loeb, L. 1921. Factors in Tissue Growth. Amer. Journ. Physiol., 56, p. 140.CrossRefGoogle Scholar
26Mast, S. O., and Root, F. M. 1916. Observations of Amœba Feeding on Rotifers, etc. Journ. Exp. Zoo., 21, p. 33.CrossRefGoogle Scholar
27Orton, J. H. 1914. On the Habitat of a Marine Amœba. Nature, 92, pp. 371, 606.CrossRefGoogle Scholar
28Pantin, C. F. A. 1923. The Determination of pH of Microscopic Bodies. Nature, 111, p. 81.CrossRefGoogle Scholar
29Procter, H. R. 1914. The Equilibrium of dilute Hydrochloric Acid and Gelatine. Journ. Chem. Soc., 1, p. 327.Google Scholar
30Rhumbler, L. 1898. Physikalische Analyse von Lebenserscheinungen der Zelle. Arch. f. Entwick: mech., 7, p. 103.CrossRefGoogle Scholar
31Rhumbler, L. 1910. Der verschiedenartigen Nahrungsaufnahmen bei Amöben. Arch. f. Entwick: mech., 30, p. 194.CrossRefGoogle Scholar
32Schæffer, A. A. 1920. Amœboid Movement. Princeton University Press and Oxford Press.Google Scholar
33Seifriz, W. 1921. On some Physical Properties of Protoplasm by the aid of Microdissection. Annals of Botany, XXXV, No. 138, p. 269.CrossRefGoogle Scholar
34Taylor, M. 1920. Aquarium Cultures for Biological Teaching. Nature, 105, p. 232.CrossRefGoogle Scholar