Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-22T17:20:57.615Z Has data issue: false hasContentIssue false

On the differences between the two ‘indicator’ species of chaetognath, Sagitta setosa and S. elegans

Published online by Cambridge University Press:  11 May 2009

Q. Bone
Affiliation:
The Laboratory, Marine Biological Association, Citadel Hill, Plymouth PL1 2PB
C. Brownlee
Affiliation:
The Laboratory, Marine Biological Association, Citadel Hill, Plymouth PL1 2PB
G. W. Bryan
Affiliation:
The Laboratory, Marine Biological Association, Citadel Hill, Plymouth PL1 2PB
G. R. Burt
Affiliation:
The Laboratory, Marine Biological Association, Citadel Hill, Plymouth PL1 2PB
P. R. Dando
Affiliation:
The Laboratory, Marine Biological Association, Citadel Hill, Plymouth PL1 2PB
M. I. Liddicoat
Affiliation:
The Laboratory, Marine Biological Association, Citadel Hill, Plymouth PL1 2PB
A. L. Pulsford
Affiliation:
The Laboratory, Marine Biological Association, Citadel Hill, Plymouth PL1 2PB
K. P. Ryan
Affiliation:
The Laboratory, Marine Biological Association, Citadel Hill, Plymouth PL1 2PB

Extract

The suggestion that the two chaetognath species Sagitta setosa and S. elegans were ‘indicators’ of different water masses was first made by Meek (1928), working off Northumberland, and subsequently developed by Russell (1933, 1935, 1939) in his classical work on their distribution as indicators of ‘Channel’ and ‘Western’ water off Plymouth. The alternation in dominance of the two species during the well-known changes in the Western Channel off Plymouth during the past 60 years (which have been termed the ‘Russell’ cycle; Cushing & Dickson, 1976) have most recently been reviewed and discussed by Southward (1984).

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bone, Q., Grimmelikhuijzen, C. J. P., Pulsford, A. & Ryan, K. P., 1987. Possible transmitter functions of acetylcholine and an RFamide-like substance in Sagitta (Chaetognatha). Proceedings of the Royal Society (B), 230, 114.Google Scholar
Burfield, S. T., 1927. Sagitta. L.M.B.C. Memoirs on Typical British Marine Plants and Animals, no. 28, 104 pp.Google Scholar
Cushing, D. H. & Dickson, R. R., 1976. The biological response in the sea to climatic change. Advances in Marine Biology, 14, 122.Google Scholar
Dallot, S., 1970. L'anatomie du tube digestif dans la phylogenie et la systematique des chaetognathes. Bulletin du Museum national d'histoire naturelle, 42, 549565.Google Scholar
Dando, P., Southward, A. J., Southward, E. C. & Barrett, R. L., 1987. Possible energy sources for chemoautotrophic prokaryotes symbiotic with invertebrates from a Norwegian fjord. Ophelia, 26, 135150.CrossRefGoogle Scholar
Denton, E. J., Gilpin-Brown, J. B. & Shaw, T. I., 1969. A buoyancy mechanism found in cranchid squid. Proceedings of the Royal Society (B), 174, 271279.Google Scholar
Denton, E. J. & Shaw, T. I., 1962. The buoyancy of gelatinous marine animals. Journal of Physiology, 161, 1415P.Google Scholar
Doncaster, L., 1902. On the development of Sagitta, with notes on the anatomy of the adult. Quarterly Journal of Microscopical Science, 46, 351398.Google Scholar
Duvert, M., Gros, D. & Salat, C., 1980. The junctional complex in the intestine of Sagitta setosa (Chaetognatha): the paired septate junction. Journal of Cell Science, 42, 227246.CrossRefGoogle ScholarPubMed
Feigenbaum, D. L., 1977. Nutritional Ecology of the Chaetognatha with Particular Reference to External Hair Patterns, Prey Detection, and Feeding. Ph.D. dissertation, University of Miami, Coral Gables, Florida.Google Scholar
Feigenbaum, D. L. & Maris, R. C., 1984. Feeding in the Chaetognatha. Oceanography and Marine Biology, an Annual Review, 22, 343392.Google Scholar
Feigenbaum, D. L. & Reeve, M. R., 1977. Prey detection in the Chaetognatha: response to a vibrating probe and experimental determination of attack distance in large aquaria. Limnology and Oceanography, 22, 10521058.CrossRefGoogle Scholar
Fraser, J. H., 1952. The Chaetognatha and other zooplankton of the Scottish area and their value as biological indicators of hydrographical conditions. Marine Research, no. 2, 52 pp.Google Scholar
Fraser, J. H., 1957. Chaetognatha. Fiches d'identification du zooplancton, no. 1, 6 pp.Google Scholar
Fraser, J. H., 1969. Experimental feeding of some medusae and chaetognatha. Journal of the Fisheries Research Board of Canada, 26, 17431762.CrossRefGoogle Scholar
Grassi, G. B., 1883. I Chetognathi. Fauna und Flora des Golfes von Neapel, 5, 126 pp.Google Scholar
King, K. R., 1979. The life history and vertical distribution of the chaetognath Sagitta elegans, in Dabob Bay, Washington. Journal of Plankton Research, 1, 153167.CrossRefGoogle Scholar
Kotori, M., 1975. Morphology of Sagitta elegans (Chaetognatha) in early larval stages. Journal of the Oceanographical Society of Japan, 31, 139144.CrossRefGoogle Scholar
Kuhl, W., 1928. Chaetognatha. Tierwelt der Nord- und Ostsee, 11(VIIb), 24 pp.Google Scholar
Liddicoat, M., Butler, E. I. & Knox, S., 1975. The determination of ammonia in sea water. Limnology and Oceanography, 20, 131132.CrossRefGoogle Scholar
Meek, A., 1928. On Sagitta elegans and Sagitta setosa from the Northumbrian plankton, with a note on a trematode parasite. Proceedings of the Zoological Soceity of London, 30, 743776.CrossRefGoogle Scholar
Parry, D. A., 1944. Structure and function of the gut in Spadella and Sagitta. Journal of the Marine Biological Association of the United Kingdom, 26, 1638.CrossRefGoogle Scholar
Reeve, M. R., Raymont, J. E. G. & Raymont, J. K. B., 1970. Seasonal biochemical composition and energy sources of Sagitta hispida. Marine Biology, 6, 357364.CrossRefGoogle Scholar
Russell, F. S., 1933. The seasonal distribution of macroplankton as shown by catches in the 2-metre stramin ring-trawl in off-shore waters off Plymouth. Journal of the Marine Biological Association of the United Kingdom, 19, 7382.CrossRefGoogle Scholar
Russell, F. S., 1935. On the value of certain animals as indicators of water movements in the English Channel and North Sea. Journal of the Marine Biological Association of the United Kingdom, 20, 309332.CrossRefGoogle Scholar
Russell, F. S., 1939. Hydrographical and biological conditions in the North Sea as indicated by plankton organisms. Journal du Conseil, 14, 171192.CrossRefGoogle Scholar
Ryan, K. P., & Purse, D. H., 1985. A simple plunge-cooling device for preparing biological specimens for cryotechniques. Mikroskopie, 42, 247251.Google Scholar
Ryan, K. P., Purse, D. H. & Wood, J. R., 1985. A transmission cryo-stage with a heater and integral anti-contaminator for a scanning electron microscope. Mikroskopie, 42, 225229.Google Scholar
Savineau, J.-P. & Duvert, M., 1986. Physiological and cytochemical studies of Ca in the primary musculature of the trunk of Sagitta setosa (Chaetognath). Tissue and Cell, 18, 953956.CrossRefGoogle ScholarPubMed
Southward, A. J., 1984. Fluctuations in the ‘indicator’ chaetognaths Sagitta elegans and Sagitta setosa in the Western Channel. Oceanologica acta, 7, 229239.Google Scholar
Southward, A. J. & Barrett, R. L., 1983. Observations on the vertical distribution of zoo-plankton, including post-larval teleosts, off Plymouth in the presence of a thermocline and a chlorophyll-dense layer. Journal of Plankton Research, 5, 599618.CrossRefGoogle Scholar
Thomas, R. C., 1978. Ion-sensitive Intracellular Microelectrodes. How to Make and Use Them. London: Academic Press.Google Scholar
Welsch, U. & Storch, V., 1983. Enzymhistochemische und elektronenmikroskopische Beobachtungen am Darmepithel von Sagitta elegans. Zoologische Jahrbücher (Abteilung für Anatomie und Ontogenie der Tiere), 109, 2333.Google Scholar