Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-03T15:36:39.471Z Has data issue: false hasContentIssue false

On assessing the age of deep oceanic water by carbon-14

Published online by Cambridge University Press:  11 May 2009

L. H. N. Cooper
Affiliation:
The Plymouth Laboratory

Extract

The rate of circulation and age of the deep water of the oceans is of much interest. Worthington (1955) has suggested an age of 100–160 years for northern North Atlantic water which has reached the Carribean and Cayman Seas. I (in part. Cooper, 1955, 1956) have suspected that the rate of circulation of much of the North Atlantic deep water may be even faster than Worthington's results suggest. Provisional direct observations by G. Wüst & G. Dietrich (private communication) also suggest that the deep circulation is quite rapid.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1956

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Buch, K., 1933. Der Borsäuregehalt des Meerwassers und seine Bedeutung bei der Berechnung des Kohlensäuressystems in Meerwasser. Rapp. Cons. Explor. Mer., Vol. 85, pp. 71–5.Google Scholar
Buch, K., 1942. Kohlensäure in Atmosphäre und Meer. Ann. Hydrogr., Berl., Jahrg. 70, pp. 193205.Google Scholar
Carr, D. R. & Kulp, J. L., 1954. Dating with natural radioactive carbon. Trans. N.Y. Acad. Sci., Ser. 2, Vol. 16, pp. 175–81.CrossRefGoogle Scholar
Cooper, L. H. N., 1955. Deep water movements in the North Atlantic as a link between climatic changes around Iceland and the biological productivity of the English Channel and Celtic Sea. J. mar. Res., Convocation issue (in the Press).Google Scholar
Cooper, L. H. N., 1956. Hypotheses connecting fluctuations in Arctic climate with biological productivity in the English Channel. Pap. mar. Biol. Oceanogr., Deep-Sea Res. Suppl. to Vol. 3, pp. 212–23.Google Scholar
Currie, R., 1953. Upwelling in the Benguela current. Nature, Lond., Vol. 171, p. 497.CrossRefGoogle Scholar
Deacon, G. E. R., 1940. Carbon dioxide in Arctic and Antarctic Seas. Nature, Lond., Vol. 145, p. 250.CrossRefGoogle Scholar
Defant, A., Böhnecke, G. & Wattenberg, H., 1936. Die ozeanographischen Arbeiten des Vermessungsschiffes ‘Meteor’ in der Dänemarkstrasse und Irmingersee. I. Teil. Veröff. Inst. Meeresk. Univ. Berl. 2 N.F., A, Heft 32, pp. 1152.Google Scholar
Helland-Hansen, B. & Nansen, F., 1909. The Norwegian Sea. Rep. Norweg. Fish. Invest., Vol. 2, No. 2, 390 pp.Google Scholar
Kulp, J. L., 1952. The carbon 14 method of age determination. Sci. Mon. N.Y., Vol. 75, pp. 259–67.Google Scholar
Kulp, J. L., 1953a. Carbon-14 measurements on geological samples. Atomics, Vol. 4, pp. 96–8.Google Scholar
Kulp, J. L., 1953b. Dating with carbon 14. J. chem. Educ, Vol. 30, pp. 432–5.CrossRefGoogle Scholar
Smith, E. H., Soule, F. M. & Mosby, O., 1937. The Marion and General Greene Expeditions to Davis Strait and Labrador Sea. Sci. Res., Pt. 2, Physical Oceanography. Bull. U.S. Cst Guard, No. 19, 259 pp. (Coll. Pap. Woods Hole oceanogr. Instn, 1937, Pt. II.)Google Scholar
Soule, F. M. & Graves, G. Van A., 1937. International ice observations and Ice Patrol Service in the North Atlantic Ocean. Season of 1935. Bull. U.S. Cst Guard, No. 25, 140 pp.Google Scholar
Stranks, D. R. & Harris, G. M., 1953. Predicted isotopic enrichment effects in some isotopic exchange equilibria involving carbon-14. J. Amer. chetn. Soc, Vol. 75, pp. 2015–16.CrossRefGoogle Scholar
Tait, J. B., 1937. The surface water drift in the northern and middle areas of the North Sea and in the Faroe-Shetland Channel. Part 11, Section 3. Sci. Invest. Fish. Div. Scot., 1937, No. 1, 60 pp.Google Scholar
Truesdale, G. A., Downing, A. L. & Lowden, G. F., 1955. The solubility of oxygen in pure water and sea-water. J. appl. Chem., Lond., Vol. 5, pp. 5362.CrossRefGoogle Scholar
Wattenberg, H., 1938. Die Verteilung des Sauerstoffs und des Phosphats im Atlantischen Ozean. Wiss. Ergebn. dtsch. Atl. Exp. ‘Meteor', Bd. 9, Lief. 1.Google Scholar
Worthington, L. V., 1955. A new theory of Caribbean bottom-water formation. Deep-Sea Res., Vol. 3, pp. 82–7.Google Scholar
Wust, G., 1943. Der subarktische Bodenstrom in der westatlantischen Mulde. Ann. Hydrogr., Berl., Jahrg. 71, pp. 249–55.Google Scholar