Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-22T17:11:07.241Z Has data issue: false hasContentIssue false

Observations on the Reactions of Marine Plankton to Light

Published online by Cambridge University Press:  11 May 2009

G. M. Spooner
Affiliation:
Assistant Naturalist at the Plymouth Laboratory.

Extract

1. The most noticeable response of marine plankton to light, under laboratory conditions, is the formation of groups on the lighted (or opposite) side of the vessel containing them.

2. Specimens from such groups were tested under different conditions of illumination, and in all cases they moved in the direction of the light quite irrespective of accompanying changes of intensity in the surroundings.

3. Groups form around the line of direction of the light, or the resultant direction when the light is scattered or falling from more directions than one, this being the direct result of individuals moving along the mean path of incidence of the light.

4. The behaviour of individuals was examined more closely to distinguish between the two possible ways in which the directed movement could have been brought about, viz. (i) reactions to bilateral inequalities of illumination (here called “true topotaxis”), and (ii) reactions to changes in total illumination of light-receptors (a type of “phobotaxis”). For a number of species it was clearly a case of “true topotaxis,” and very probably for at least the majority of the rest.

5. In two very different cases, namely, Acartia clausi and Poecilochaetus serpens, there was no orientation of the body, but nevertheless efficient orientation of the path of movement. It is believed that this is the first occasion on which such behaviour has been described.

6. The observations described point to the fact that movement in the direction of incidence of the light, however this may be affected, is general among a wide range of the smaller, free-living, bilaterally symmetrical, marine animals, and would tend to dominate other possible response to light. This behaviour on the part of individuals provides a substantial basis for attempted explanations of the correlations, that have been demonstrated by ecological workers, between the vertical distribution of populations and light-intensity.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1933

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bancroft, F. W., 1913. Heliotropism, differential sensibility, and galvanotropism in Euglena. Journ. Exp. Zool., Vol. XV, pp. 383425.CrossRefGoogle Scholar
Davenport, C. B., and Cannon, W. B., 1897. On the determination of the direction and rate of movement of organisms by light. Journ. Physiol., Vol. XXI, pp. 2232.CrossRefGoogle Scholar
Ditlevsen, H., 1907. Versüche über das Verhaltnis einiger Planktontiere gegenüber Licht. Skand. Arch. f. Physiol., Bd. XIX, pp. 241261.CrossRefGoogle Scholar
Esterly, C. O., 1919. Reactions of various plankton animals with reference to their diurnal migrations. Univ. Calif. Publ. Zool., Berkeley, Vol. XIX, No. 1, pp. 183.Google Scholar
Ewald, W. F., 1912. On artificial modification of light reactions and the influence of electrolytes on phototaxis. Journ. Exper. Zool., Vol. XIII, No. 4, pp. 591612.CrossRefGoogle Scholar
Fraenkel, G., 1931. Die Mechanik der Orientierung der Tiere im Raum. Biol. Reviews, Camb. Phil. Soc., Vol. VI, pp. 3687.CrossRefGoogle Scholar
Franz, V., 1910. Phototaxis und Wanderung nach Versuchen mit jungfischen und fischlarven. Int. Rev. Hydrobiol. Hydrogr., Bd. III, pp. 306334.CrossRefGoogle Scholar
Franz, V., 1911. Weitere Phototaxis Studien. Int. Rev. Hydrobiol. Hydrogr., Bd. III, Suppl., pp. 121.Google Scholar
Friedrich, H., 1931. Mitteilungen über vergleichende Untersuchungen über den Lichtsinn einiger mariner Copepoden. Zeit. Vergleich. Physiol., Bd. XV, pp. 121138.CrossRefGoogle Scholar
Goldsmith, M., 1921. Les réactions phototropiques de quelques animaux marins. C. R. Acad. Sci., Paris, t. CLXXIII, pp. 206208.Google Scholar
Groom, T. T., and Loeb, J., 1890. Der Heliotropismus der Nauplien von Balanus perforatus und die periodischen Tiefwanderungen pelagischer Tiere. Biol. Centralb., Bd. X, pp. 160177.Google Scholar
Harper, E. H., 1907. The behaviour of the phantom larvæ of Corethra plumicornis Feb. Jour. Comp. Neur. & Psychol., Vol. XVII, pp. 435456.Google Scholar
Henschel, J., 1929. Reizphysiologisch Untersuchungen an der Käsemilbe Tyrolichus casei Oud. Zeit. Vergl. Physiol., Bd. IX, pp. 802837.Google Scholar
Herter, K., 1926. Versuche über die Phototaxis von Nereis diversicolor O. F. Mull. Zeit. Vergl. Physiol., Bd. IV, pp. 103141.Google Scholar
Holmes, S. J., 1908. Phototaxis in fiddler crabs and its relation to theories of orientation. Jour. Comp. Neur. & Psychol., Vol. XVIII, pp. 493497.CrossRefGoogle Scholar
Jennings, H. S., 1906. Behaviour of the lower organisms. New York.CrossRefGoogle Scholar
Kalmus, H., 1931. Bewegungsstudien an den larven von Sabellarai spinulosa Leuck. Zeit. Vergl. Physiol., Bd. XV, pp. 164192.Google Scholar
Kühn, A., 1919. Die Orientierung der Tiere im Raum. Jena.Google Scholar
Loeb, J., 1893. Uber künstliche Umwandlung positiv heliotropischer Tiere in negativ heliotropische und umgekehrt. Arch. Ges. Physiol., Bd. LIV, pp. 81107.CrossRefGoogle Scholar
Loeb, J. 1918. Forced movements, tropisms, and animal conduct. Philadelphia and London.Google Scholar
Loeb, J., and Northrop, J. H., 1917. Heliotropic animals as photometers on the basis of the validity of the Bunsen-Roscoe law for heliotropic reactions. Proc. Nat. Acad. Sci., pp. 539544.CrossRefGoogle ScholarPubMed
Lyon, E. P., 1906. Note on the heliotropism of Palæmonetes larvæ. Biol. Bull., Vol. XII, pp. 2325.CrossRefGoogle Scholar
Marine Biological Association, 1931. Plymouth Marine Fauna. Second edition. Plymouth.Google Scholar
Mast, S. O., 1921. Reactions to light in the larvæ of the Ascidians, Amaroucium constellatum and A. pellucidum, with special reference to photic orientation. Journ. Exp. Zool, Vol. XXXIV, pp. 149188.Google Scholar
Miller, H. M., and McCoy, O. R., 1929. An experimental study of the behaviour of Cercaria floridensis in relation to its fish intermediate host. Carnegie Inst. Year Book, Vol. XXVIII, pp. 295297.Google Scholar
Moore, B., 1909. Reactions of marine organisms in relation to light and phosphorescence. Trans. Liverpool Biol. Soc., Vol. XXIII, p. 19.Google Scholar
Müller, A., 1925. Ueber Lichtreactionen von Landasseln. Zeit. Vergl. Physiol., Bd. III, pp. 113143.CrossRefGoogle Scholar
Murbach, L., 1909. Some light reactions of the medusa, Gonionemus. Biol. Bull., Vol. XVII, pp. 354358.CrossRefGoogle Scholar
Parker, G. H., 1901. The reactions of Copepods to various stimuli, and the bearing of this on the problem of daily depth migrations. Bull. U.S. Fish. Comm., Vol. XXI, pp. 103123.Google Scholar
Parker, G. H. 1906. On the reactions of Amphioxus to light. Proc. Soc. Exp. Biol. & Med., Vol. III, pp. 6162.Google Scholar
Patten, B. M., 1914. A quantitative determination of the orientating reaction of the blowfly larva. Journ. Exp. Zool., Vol. XVII, pp. 213280.CrossRefGoogle Scholar
Rose, M., 1913. Recherches biologiques sur le plankton (deuxième note). Bull. Inst. Océan. Monaco, No. 276.Google Scholar
Rose, M., 1924. Recherches biologiques sur le plankton (5e note). Ibid., No. 439.Google Scholar
Rose, M., 1925. Contribution à l'étude de la biologie du plankton. Arch. Zool. Exp. et Gén., t. LXIV, pp. 387542.Google Scholar
Rose, M., 1929. La Question des Tropismes. Paris.Google Scholar
Russell, F. S., 1925. The vertical distribution of marine macroplankton. An observation on diurnal changes. Journ. Mar. Biol. Assoc., Vol. XIII, N.S., pp. 769809.CrossRefGoogle Scholar
Russell, F. S., 1926. The vertical distribution of marine macroplankton. IV. The apparent importance of light intensity as a controlling factor in the behaviour of certain species in the Plymouth area. Journ. Mar. Biol. Assoc., Vol. XIV, N.S., pp. 415440.CrossRefGoogle Scholar
Russell, F. S., 1927. The vertical distribution of plankton in the sea. Biol. Reviews, Camb. Phil. Soc., Vol. II, pp. 213262.CrossRefGoogle Scholar
Strasburger, E., 1878. Die Wirkung des Lichtes und der Wärme auf Schwarmsporen. Jena. Zeit., N.F., Bd. XII, pp. 551625.Google Scholar
Towle, E., 1900. A study in the heliotropism of Cypridopsis. Amer. Journ. Physiol., Vol. III, pp. 345365.CrossRefGoogle Scholar
Visscher, J. P., and Luce, E. H., 1928. Reactions of Cyprid larvæ of barnacles to light with special reference to spectral colours. Biol. Bull., Vol. LIV, pp. 336350.CrossRefGoogle Scholar
Welsh, J. H., 1932. Temperature and light as factors influencing the rate of swimming of larvæ of the mussel crab, Pinnotheres maculatus Say. Biol. Bull., Vol. LXIII, pp. 310326.Google Scholar
White, G. M., 1924. Reactions of the larvæ of the shrimp Palæmonetes vulgaris and the squid Loligo pealii to monochromatic light. Biol. Bull., Vol. XLVII, pp. 265272.CrossRefGoogle Scholar
Yerkes, R. M., 1899. Reaction of Entomostraca to stimulation by light. Amer. Journ. Physiol., Vol. III, pp. 157182.CrossRefGoogle Scholar
Yerkes, R. M., 1900. Reactions of Daphnia and Cypris. Amer. Journ. Physiol., Vol. IV, pp. 405422.CrossRefGoogle Scholar
Yerkes, R. M., 1903. A study of the reactions and reaction-time of the Medusa Gonionemus murbachii to photic stimuli. Amer. Journ. Physiol., Vol. IX, pp. 279307.CrossRefGoogle Scholar