Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-03T15:04:20.325Z Has data issue: false hasContentIssue false

A new species of Archinome (Polychaeta: Archinomidae) from hydrothermal vents on the Pacific–Antarctic Ridge 37°S

Published online by Cambridge University Press:  20 April 2009

Dieter Fiege*
Affiliation:
Forschungsinstitut Senckenberg, Sektion Marine Evertebraten II, Senckenberganlage 25, D-60325, Frankfurt/M., Germany
Gordon Bock
Affiliation:
Forschungsinstitut Senckenberg, Sektion Marine Evertebraten II, Senckenberganlage 25, D-60325, Frankfurt/M., Germany Institut für Zoologie, Johannes Gutenberg-Universität Mainz, Johannes-von-Müller-Weg 6, D-55128 Mainz
*
Correspondence should be addressed to: D. Fiege, Forschungsinstitut Senckenberg, Sektion Marine Evertebraten II, Senckenberganlage 25, D-60325, Frankfurt/M., Germany email: [email protected]

Abstract

Archinome storchi sp. nov. is described as the second species of the family Archinomidae. The specimens were collected from a hydrothermal vent site in 2212 m depth on the Pacific–Antarctic Ridge at 37° S. It differs from Archinome rosacea mainly in the position of the anus, the first appearance of branchiae and the length of the nuchal cirrus. Additional specimens of A. rosacea collected from hydrothermal vent locations in the North Fiji Basin and on the Mid-Atlantic Ridge were used for morphological comparison. A synoptic table of characters is given for A. rosacea and A. storchi sp. nov. together with a list of records for Archinomidae compiled from the literature.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Blake, E.A. (2006) Biogeographic and community structural differences between Pacific hydrothermal vent mussel beds. Program of the 5th Annual Graduate Research Symposium and American Culture Conference, March 24–25, 2006, College of William & Mary University Center Williamsburg, VA, USA. Abstract, pp. 1415. Available from http://www.wm.edu/so/gsa/symposium/documents/2006_GRS_Program.pdf (accessed 24 July 2008).Google Scholar
Blake, J.A. (1985) Polychaeta from the vicinity of deep-sea geothermal vents in the eastern Pacific. I: Euphrosinidae, Phyllodocidae, Hesionidae, Nereididae, Glyceridae, Dorvilleidae, Orbiniidae, and Maldanidae. Bulletin of the Biological Society of Washington 6, 67101.Google Scholar
Coleman, C.O. (2003) ‘Digital inking’: how to make perfect line drawings on computers. Organisms, Diversity and Evolution 3, 114, Electronic Supplement 14.CrossRefGoogle Scholar
Desbruyères, D., Biscoito, M., Caprais, J.-C., Colaço, A., Comtet, T., Crassous, P., Fouquet, Y., Khripounoff, A., Le Bris, N., Olu, K., Riso, R., Sarradin, P.-M., Segonzac, M. and Vangriesheim, A. (2001) Variations in deep-sea hydrothermal vent communities on the Mid-Atlantic Ridge near the Azores plateau. Deep-Sea Research I, 48, 13251346.CrossRefGoogle Scholar
Desbruyères, D., Segonzac, M. and Bright, M. (2006) Handbook of deep-sea hydrothermal vent fauna. Denisia 18, 1544.Google Scholar
Fauchald, K. and Rouse, G. (1997) Polychaete systematics: past and present. Zoologica Scripta 26, 71138.CrossRefGoogle Scholar
Fiege, D. and Bock, G. (2007) SEM observations on Archinomidae (Annelida: Polychaeta) from hydrothermal vents in the Pacific and Atlantic. 9th International Polychaete Conference in Portland, Maine, USA. August 12–18, 2007. Abstract, p. 126.Google Scholar
Galkin, S.V., Vinogradov, G.M. and ‘Mir’ Submersibles Team (2004) Russian biological studies using Mir submersibles at North Atlantic and East Pacific hydrothermal sites. InterRidge News 13, 2733.Google Scholar
Galkin, S.V., Biological Group and ‘Mir’ Submersibles Team (2006) Lost Village—a ‘Faubourg’ of Lost City: benthic studies using Mir submersibles at North Atlantic hydrothermal sites in 2005. InterRidge News 15, 1824.Google Scholar
Gebruk, A.V., Galkin, S.V., Vereshchaka, A.L., Moskalev, L.I. and Southward, A.J. (1997) Ecology and biogeography of the hydrothermal vent fauna of the Mid-Atlantic Ridge. Advances in Marine Biology 32, 93144.CrossRefGoogle Scholar
Gebruk, A.V., Chevaldonné, P., Shank, T., Lutz, R.A. and Vrijenhoek, R.C. (2000) Deep-sea hydrothermal vent communities of the Logatchev area (14°45′N, Mid-Atlantic Ridge): diverse biotopes and high biomass. Journal of the Marine Biological Association of the United Kingdom 80, 383393.CrossRefGoogle Scholar
Govenar, B. and Fisher, C.R. (2007) Experimental evidence of habitat provision by aggregations of Riftia pachyptila at hydrothermal vents on the East Pacific Rise. Marine Ecology 28, 314.CrossRefGoogle Scholar
Haase, K., Flies, C., Fretzdorff, S., Giere, O., Houk, A., Klar, S., Koschinsky, A., Küver, J., Marbler, H., Mason, P., Nowald, N., Ostertag-Henning, C., Paulick, H., Perner, M., Petersen, S., Ratmeyer, V., Schmidt, W., Schott, T., Schröder, M., Seifert, R., Seiter, C., Stecher, J., Strauss, H., Süling, J., Unverricht, D., Warmuth, M., Weber, S. and Westernströer, U. (2005) Meteor-Berichte 05. Mid-Atlantic Expedition, Cruise No. 64, Leg 1, MARSÜD 2, 2 April–3 May 2005, Mindelo (Cape Verde)—Fortaleza (Brazil). Leitstelle Meteor, Institut für Meereskunde der Universität Hamburg, 59 pp.Google Scholar
Halbach, P., Auzende, J.M., Türkay, M. and the Scientific Party of the HYFIFLUX I Cruise (1996) The Hyfiflux Project. Hydrothermalism in the North Fiji Basin: evolution of fluids mass fluxes and special biological activity. Hyfiflux Part I. Evolution of mineral formation and zonation, special biological activity. R/V Sonne So 99 Research Cruise. 24.12.1994–28.01.1995. Manila–Suva–Suva. Technical Cruise Report SO 99. Berlin, 106 pp.Google Scholar
Halbach, P., Giere, O., Seifert, T., Seifert, R. and the Scientific Party of the HYFIFLUX II Cruise (1998) Hyfiflux II–SO 134. Hydrothermal fluid development, material bilancing and special biological activity in the North Fiji Becken. Research Cruise with RV Sonne, cruise no. SO 134. 11. Aug. 1998 (Suva, Fiji)–8. Sept. 1998 (Suva, Fiji). Technical Cruise Report. Berlin, 148 pp.Google Scholar
Hey, R.N., Massoth, G.J., Vrijenhoek, R.C., Rona, P.A., Lupton, J. and Butterfield, D.A. (2006) Hydrothermal vent geology and biology at earth's fastest spreading rates. Marine Geophysical Researches 27, 137153.CrossRefGoogle Scholar
Jenkins, C.D., Ward, M.E., Turnipseed, M., Osterberg, J. and Van Dover, C.L. (2002) The digestive system of the hydrothermal vent polychaete Galapagomystides aristata (Phyllodocidae): evidence for hematophagy? Invertebrate Biology, 121, 243254.CrossRefGoogle Scholar
Jollivet, D. (1996) Specific and genetic diversity at deep-sea hydrothermal vents: an overview. Biodiversity and Conservation 5, 16191653.CrossRefGoogle Scholar
Khripounoff, A., Vangriesheim, A., Crassous, P., Segonzac, M., Colaço, A., Desbruyères, D. and Barthelemy, R. (2001) Particle flux in the Rainbow hydrothermal vent field (Mid-Atlantic Ridge): dynamics, mineral and biological composition. Journal of Marine Research 59, 633656.CrossRefGoogle Scholar
Kicklighter, C.E., Fisher, C.R. and Hay, M.E. (2004) Chemical defense of hydrothermal vent and hydrocarbon seep organisms: a preliminary assessment using shallow-water consumers. Marine Ecology Progress Series 275, 1119.CrossRefGoogle Scholar
Kudenov, J.D. (1987) Review of the primary species characters for the genus Euphrosine (Polychaeta: Euphrosinidae). Bulletin of the Biological Society of Washington 7, 184193.Google Scholar
Kudenov, J.D. (1991) A new family and genus of the order Amphinomida (Polychaeta) from the Galapagos hydrothermal vents. In Petersen, M.E. and Kirkegaard, J.B. (eds) Proceedings of the 2nd International Polychaeta Conference, Copenhagen, 1986. Systematics, Biology and Morphology of World Polychaeta. Ophelia 5, Supplement, pp. 111120.CrossRefGoogle Scholar
Kuhn, T., Alexander, B., Augustin, N., Birgel, D., Borowski, C., Carvalho, L.M. de., Engemann, G., Ertl, S., Franz, L., Grech, C., Hekinian, R., Imhoff, J.F., Jellinek, T., Klar, S., Koschinsky, A., Kuever, J., Kulescha, F., Lackschewitz, K., Petersen, S., Ratmeyer, V., Renken, J., Ruhland, G., Scholten, J., Schreiber, K., Seifert, R., Süling, J., Türkay, M., Westernströer, U. and Zielinski, F. (2004) Meteor Berichte 03–04. Mid-Atlantic Expedition 2004. Cruise No. 60, Leg 3. Mineralogical, geochemical, and biological investigations of hydrothermal systems on the Mid-Atlantic Ridge between 14°45′N and 15°05′N (Hydromar I). 14 January–14 February 2004, Fort-de-France– Fort-de-France (Martinique). Leitstelle Meteor, Institut für Meereskunde der Universität Hamburg, 59 pp.Google Scholar
Lackschewitz, K.S., Armini, M., Augustin, N., Dubilier, N., Edge, D., Engemann, G., Fabian, M., Felden, J., Franke, P., Gärtner, A., Garbe-Schönberg, D., Gennerich, H.-H., Hüttig, D., Marbler, H., Meyerdierks, A., Pape, T., Perner, M., Reuter, M., Ruhland, G., Schmidt, K., Schott, T., Schroeder, M., Schroll, G., Seiter, C., Stecher, J., Strauss, H., Viehweger, M., Weber, S., Wenzhöfer, F. and Zielinski, F. (2005) Meteor Berichte 05. Mid-Atlantic Expedition, Cruise No. 64, Leg 2. Long term study of hydrothermalism and biology at the Logatchev field, Mid-Atlantic Ridge at 14°45′N (revisit 2005; HYDROMAR II) 6 May –6 June 2005, Fortaleza (Brazil) –Dakar (Senegal). Leitstelle Meteor, Institut für Meereskunde der Universität Hamburg, 61 pp.Google Scholar
Lamarck, J.B. (1818) Histoire naturelle des animaux sans vertèbres présentant les caractères généraux et particuliers de ces animaux, leur distribution, leurs classes, leurs familles, leurs genres, et la citation des principales espèces qui s'y rapportent; précédée d'une introduction offrant la détermination des caractères essentiels de l'animal, sa distinction du végétal et des autres corps naturels, enfin, l'exposition des principes fondamentaux de la zoologie 5. Paris: Déterville et Verdière.Google Scholar
Micheli, F., Peterson, C.H., Mullineaux, L.S., Fisher, C.R., Mills, S.W., Sancho, G., Johnson, G.A. and Lenihan, H.S. (2002) Predation structures communities at deep-sea hydrothermal vents. Ecological Monographs 72, 365382.CrossRefGoogle Scholar
Mullineaux, L.S., Mills, S.W., Sweetman, A.K., Beaudreau, A.H., Metaxas, A. and Hunt, H.L. (2005) Vertical, lateral and temporal structure in larval distributions at hydrothermal vents. Marine Ecology Progress Series 293, 116.CrossRefGoogle Scholar
Pleijel, F. (2001) Amphinomida. In Rouse, G. and Pleijel, F.Polychaetes. Oxford: Oxford University Press, pp. 145147.Google Scholar
Ramirez-Llodra, E., Blanco, M. and Arcas, A. (2004) ChEssBase: an Online Information System on Biodiversity and Biogeography of Deep-Sea Chemosynthetic Ecosystems. Version 2 World Wide Web electronic publications. Available from http://www.soc.soton.ac.uk/chess/database/ (accessed 24 July 2008).Google Scholar
Stoffers, P., Worthington, T., Petersen, S., Hannington, M., Türkay, M., Ackermand, D., Borowski, C., Dankert, S., Fretzdorff, S., Haase, K., Hekinian, R., Hoppe, A., Jonasson, I., Kuhn, T., Lancaster, R., Monecke, T., Renno, A., Stecher, J. and Weiershäuser, L. (2001) Cruise Report Sonne 157, Foundation 3. Magmatic and hydrothermal processes at a spreading axis influenced by a hotspot: the Pacific–Antarctic Ridge and off-axis seamounts near 37°S. Valparaiso, Chile–Easter Island, Chile, 15 June–14 July 2001. Berichte–Reports. Institut für Geowissenschaften, Universität Kiel 17, 1132.Google Scholar
Tarasov, V.G., Gebruk, A.V., Mironov, A.N. and Moskalev, L.I. (2005) Deep-sea and shallow-water hydrothermal vent communities: two different phenomena? Chemical Geology 224, 539.CrossRefGoogle Scholar
Van Dover, C.L. (2002a) Community structure of mussel beds at deep-sea hydrothermal vents. Marine Ecology Progress Series 230, 137158.CrossRefGoogle Scholar
Van Dover, C.L. (2002b) Trophic relationships among invertebrates at the Kairei hydrothermal vent field (Central Indian Ridge). Marine Biology 141, 761772.CrossRefGoogle Scholar
Van Dover, C.L. (2003) Variation in community structure within hydrothermal vent mussel beds of the East Pacific Rise. Marine Ecology Progress Series 253, 5566.CrossRefGoogle Scholar
Van Dover, C.L. and Doerries, M.B. (2005) Community structure in mussel beds at Logatchev hydrothermal vents and a comparison of macrofaunal species richness on slow- and fast-spreading mid-ocean ridges. Marine Ecology 26, 110120.CrossRefGoogle Scholar
Van Dover, C.L., Bacon, S., Carpenter, L. and Last, K. (2001a) Diversity within 9°50′N mussel beds on the East Pacific Rise: establishment of Train Station, East Wall and Biovent mussel beds as long-term study sites. InterRidge News 10, 2627.Google Scholar
Van Dover, C.L., Humphris, S.E., Fornari, D., Cavanaugh, C.M., Collier, R., Goffredi, S.K., Hashimoto, J., Lilley, M.D., Reysenbach, A.L., Shank, T.M., Von Damm, K.L., Banta, A., Gallant, R.M., Götz, D., Green, D., Hall, J., Harmer, T.L., Hurtado, L.A., Johnson, P., McKiness, Z.P., Meredith, C., Olson, E., Pan, I.L., Turnipseed, M., Won, Y., Young, C.R. III and Vrijenhoek, R.C. (2001b) Biogeography and ecological setting of Indian Ocean hydrothermal vents. Science 294, 818823.CrossRefGoogle ScholarPubMed
Ward, M.E., Jenkins, C.D. and Van Dover, C.L. (2003) Functional morphology and feeding strategy of the hydrothermal-vent polychaete Archinome rosacea (family Archinomidae). Canadian Journal of Zoology 81, 582590.CrossRefGoogle Scholar
Wiklund, H., Nygren, A., Pleijel, F. and Sundberg, P. (2008) The phylogenetic relationships between Amphinomidae, Archinomidae and Euphrosinidae (Amphinomida, Aciculata, Polychaeta), inferred from molecular data. Journal of the Marine Biological Association of the United Kingdom 88, 509513.CrossRefGoogle Scholar
Williams, T. (1852) Report on the British Annelida. Report of the Twenty-first Meeting of the British Association for the Advancement of Science held at Ipswich in July 1851. London: John Murray, pp. 1273.Google Scholar