Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-03T15:27:56.312Z Has data issue: false hasContentIssue false

Mucus-Secreting Cells from the Alimentary Canal of Ciona Intestinalis

Published online by Cambridge University Press:  11 May 2009

N. W. Thomas
Affiliation:
Department of Zoology, University College, Swansea

Extract

The secretion of mucus has been most intensively studied in goblet cells and mucous salivary gland cells from mammals, particularly laboratory rodents. It was therefore thought desirable to characterize mucous cells from the gut of Ciona intestinalis (L.), in which mucus has an important role in food capture, the formation of a food chain, the protection of the gut lining from physical and chemical abrasion and the formation of faeces. The alimentary canal of Ciona is composed of five regions: (I) a perforated pharynx, (II) a short tapering oesophagus, (III) an ovoid ridged stomach, (IV) an intestine and (V) a rectum. Previous authors (Roule, 1884; Yonge, 1925; Van Weel, 1940; Millar, 1953; Fouque, 1954) have described the preponderance of mucus-secreting cells which occur in the oesophagus, intestine and rectum. It is these three regions that have now been studied in more detail, with the use of histochemical and electron-microscopic techniques.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1970

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adams, C. W. M., 1957. A p-dimethylaminobenzaldehyde-nitrite method for the histochemical demonstration of tryptophan and related compounds. J. din. Path., Vol. 10, pp. 5661.CrossRefGoogle ScholarPubMed
Baker, J. R., 1946. The histochemical recognition of lipine. Q. Jl microsc. Sci., Vol. 87, pp. 441–70.Google ScholarPubMed
Baker, J. R. 1947. The Histochemical Recognition Of Certain Guanidine Derivatives. Q. Jl microsc. Sci., Vol. 88, pp. 115–21.Google ScholarPubMed
Baker, J. R., 1956. The histochemical recognition of phenols especially tyrosine. Q. Jl microsc. Sci., Vol. 97, pp. 161–4.Google Scholar
Belanger, L. F., 1963. Comparison between different histochemical and histophysical techniques as applied to mucus-secreting cells. Ann. N.Y. Acad. Sci., Vol. 106, pp. 364–78.CrossRefGoogle ScholarPubMed
Bellairs, R., 1961. Cell death in chick embryos as studied in the electron microscope. J. Anat., Vol. 95, pp. 5460.Google Scholar
Berridge, M. J., 1967. Ion and water transport across epithelia. In Insects and Physiology. Eds. Beament, J. W. L. & Treherne, J. E., pp. 329–47. Edinburgh and London, Oliver and Boyd.Google Scholar
Bierring, F. 1962. Electron microscopic observations on the mucus production in human and rat intestinal goblet cells. Acta path. microbiol. scand., Vol. 54, pp. 241–52.CrossRefGoogle ScholarPubMed
Bitensky, L. & Cohen, S., 1965. The histochemical demonstration of alkaline phosphatase in unfixed frozen sections. Q. Jl microsc. Sci., Vol. 106, pp. 193–6.Google ScholarPubMed
Brandes, D., Bertini, F. & Smith, E. W., 1965. Role of lysosomes in cellular lytic processes. II. Cell death during holocrine secretion in sebaceous glands. Exp. & Molec. Path., Vol. 4, pp. 245–65.CrossRefGoogle ScholarPubMed
Bulger, R. E., 1963. Fine structure of the rectal (salt-secreting) gland of the spiny dogfish, Squalus acanthias. Anat. Rec, Vol. 147, pp. 95127.CrossRefGoogle Scholar
Cain, A. J., 1947. The use of Nile blue in the examination of lipoids. Q. Jl microsc. Sci., Vol. 88, pp. 383–92.Google Scholar
Carlisle, D. B., 1958. Niobium in Ascidians. Nature, Lond., 181, pp. 933.CrossRefGoogle Scholar
Copeland, E., 1964. A mitochondrial pump in the cells of the anal papillae of mosquito larvae. J. Cell. Biol., Vol. 23, pp. 253–63.CrossRefGoogle ScholarPubMed
Degail, L. & Lévi, C., 1964. Étude au microscope électronique de la gland digestive des Pyuridae (Ascidies). Cah. Biol. mar., T. 5, pp. 411–22.Google Scholar
Doyle, W. L., 1960. The principal cells of the salt-gland of marine birds. Expl Cell Res., Vol., 21, pp. 386–93.CrossRefGoogle ScholarPubMed
Feulgen, R. & Rossenbeck, H., 1924. Mikroskopisch-chemischer Nach wies einer Nucleinsäure vom Typus der Thymonucleinsäure und die darauf beruhende elektive Färbung von Zellkernen in mikroskopischen Präpartaten. Hoppe Seyler's Z. physiol. Chem., Bd. 135, pp. 203–48.CrossRefGoogle Scholar
Florey, H. W., 1962. The secretion and function of intestinal mucus. Gastroenterology, Vol. 43, pp. 326–9.CrossRefGoogle ScholarPubMed
Fouque, G., 1954. Contribution a l'étude de la gland pylorique des Ascidiacés. Annls Inst. océanogr., Monaco, T. 28, pp. 189–177.Google Scholar
Freeman, J. A., 1966. Goblet cell fine structure. Anat. Rec, Vol. 154, pp. 121–47.CrossRefGoogle ScholarPubMed
Golberg, E. D., McBlair, W. & Taylor, K. M., 1951. Vanadium uptake by Tunicates. Biol. Bull. mar. biol. Lab., Woods Hole, Vol. 101, pp. 8494.CrossRefGoogle Scholar
Gomori, G., 1952. Microscopic Histochemistry: Principles and Practice. Chicago University Press.Google Scholar
Hollmann, K. H., 1963. The fine structure of the goblet cells in the rat intestine. Ann. N.Y. Acad. Sci., Vol. 106, pp. 545–54.CrossRefGoogle ScholarPubMed
Kalk, M., 1963a. Absorption of Vanadium by Tunicates. Nature, Lond., Vol. 198, pp. 1010–11.CrossRefGoogle Scholar
Kalk, M., 1963b. Intracellular sites of activity in the histogenesis of tunicate vanadocytes. Quart. Jl microsc. Sci., Vol. 104, pp. 483–93.Google Scholar
Kramer, H. & Windrum, G. M., 1955. The metachromatic staining reaction. J. Histochem. Cytochem., Vol. 3, pp. 227–37.CrossRefGoogle ScholarPubMed
Kurnick, N. B., 1952. Histological staining with methyl-green pyronin. Stain Technol., Vol. 27, pp. 233–42.CrossRefGoogle ScholarPubMed
Laskey, A. M., 1950. A modification of Mayer's mucihaematein technique. Stain Technol., Vol. 25, pp. 33–4.CrossRefGoogle Scholar
Love, R. & Frommhagen, L. H., 1953. Histochemical studies on the clam Mactra solidissma. Proc. soc. exp. Biol. Med., Vol. 83, pp. 838–44.CrossRefGoogle Scholar
Luft, J. H., 1961. Improvements in epoxy resin embedding methods. J. biophys. biochem. Cytol., Vol. 9, pp. 409–14.CrossRefGoogle ScholarPubMed
McManus, J. F. A., 1948. Histological and histochemical use of periodic acid. Stain Technol., Vol. 23, pp. 99108.CrossRefGoogle ScholarPubMed
Millar, R. H., 1953. Ciona. L.M.B.C. typ. Br. mar. Pl. Anim., No. 35. Ed. Colman, J. S., 122 pp. Liverpool University Press.Google Scholar
Nachlas, M. M. & Seligman, A. M., 1949. The histochemical demonstration of esterase. J. natn Cancer Inst., Vol. 9, pp. 415–25.Google ScholarPubMed
Olsson, R., 1963. Endostyles and endostylar secretions. A comparative histochemical study. Acta zool., Stockh., Vol. 44, pp. 299328.CrossRefGoogle Scholar
Palay, S. L., 1958. The morphology of secretion. In ‘Frontiers in Cytology’ (Ed. Palay, S. L.), pp. 305–42. New Haven: Yale University Press.Google Scholar
Pearse, A. G. E., 1960. Histochemistry. Theoretical and Applied. Second Edition. 998 pp. London, J. and A. Churchill.Google Scholar
Pease, D. C., 1955. Electron microscopy of the tubular cells of the kidney cortex. Anat. Rec, Vol. 121, pp. 723–43.CrossRefGoogle ScholarPubMed
Philpott, C. W., 1965. Halide localisation in the Teleost chloride cell and its identification by selected area electron diffraction. Protoplasma, Vol. 60, pp. 723.CrossRefGoogle Scholar
Philpott, C. W. & Copeland, C. E., 1963. Fine structure of chloride cells from three species of Findulus. J. Cell Biol., Vol. 18, pp. 389404.CrossRefGoogle Scholar
Reynolds, E. S., 1963. The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J. Cell Biol., Vol. 17, pp. 208–12.CrossRefGoogle ScholarPubMed
Rhodin, J., 1959. Ultrastructure of the tracheal ciliated mucosa in rat and man. Ann. Otol. Rhinol. Lar., Vol. 68, pp. 964–74.CrossRefGoogle Scholar
Robertson, J. D., 1954. The chemical composition of the blood of some aquatic chordates including members of the Tunicata, Cyclostomata and Osteichthyes. J. exp. Biol., Vol. 31, pp. 424–42.CrossRefGoogle Scholar
Roule, L., 1884. Recherches sur les Ascidies simples des cotes de provence (Phallusiadés). Annls Mus. Hist. nat. Marseille, T. 2, pp. 1270.Google Scholar
Sabatini, D., Bensch, K. & Barrnett, R. J., 1963. Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J. Cell Biol., Vol. 17, pp. 1958.CrossRefGoogle ScholarPubMed
Scott, B. L. & Pease, D. C., 1959. Electron microscopy of the salivary and lacrimal glands of the rat. Am. J. Anat., Vol. 104, pp. 115–61.CrossRefGoogle ScholarPubMed
Scott, B. L. & Pease, D. C., 1964. Electron microscopy of induced changes in the salivary glands of the rat. In Salivary Glands and their Secretion, Ed. Sreebny, L. M. & J., Meyer, pp. 1343. Oxford: Pergamon Press.CrossRefGoogle Scholar
Steedman, H. F., 1950. Alcian blue, a new stain for mucin. Q. Jl microsc. Sci., Vol. 91, pp. 477–9.Google ScholarPubMed
Van Weel, P. B., 1940. Beiträge zur Ernährungsbiologic der Ascidien Pubbl. Staz. zool. Napoli, Vol. 18, pp. 5079.Google Scholar
Yasuma, A. & Ichikawa, T., 1953. Ninhydrin-Schiff and alloxan Schiff staining a new histochemical method for protein. J. Lab. din. Med., Vol. 41, pp. 296–9.Google ScholarPubMed
Yonge, C. M., 1925. Studies on the comparative physiology of digestion. III. Secretion, digestion and assimilation in the guts of Ciona intestinalis. Br. J. exp. Biol., Vol. 2, pp. 373–88.CrossRefGoogle Scholar
Yonge, C. M., 1936. On some aspects of digestion in ciliary feeding animals. J. mar. biol. Ass. U.K., Vol. 20, pp. 341–6.CrossRefGoogle Scholar