Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-03T14:55:21.200Z Has data issue: false hasContentIssue false

Microscopical observations on the excretory organs of the hydrothermal mussel Bathymodiolus thermophilus (Mollusca: Bivalvia)

Published online by Cambridge University Press:  11 May 2009

M. Auffret
Affiliation:
Laboratoire de Biologie Marine, Faculte des Sciences, Universite de Bretagne Occidentale, 29287 Brest Cedex, France
M. Lepennec
Affiliation:
Laboratoire de Biologie Marine, Faculte des Sciences, Universite de Bretagne Occidentale, 29287 Brest Cedex, France

Abstract

The pericardial gland of the deep-sea hydrothermal mussel Bathymodiolus thermophilus (Mollusca: Bivalvia: Mytilidae) differs from other mytilids by (1) a narrow lumen and (2) conspicuous polyhedral inclusion bodies in large cytoplasmic vacuoles of the epithelial cells. These inclusions do not contain metals as revealed by microanalysis but are possibly made of proteins. The cells of this gland exhibit a fenestrated basal border which indicates a site of haemolymph ultrafiltration. The kidney is histologically comparable to that of the coastal mussel Mytilus edulis.

Type
Short Communications
Copyright
Copyright © Marine Biological Association of the United Kingdom 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, E.B., 1988. Excretory systems of molluscs. In The Mollusca, vol. 11. Form and function (ed. E.R., Trueman and Mr., Clarke), pp. 381448. San Diego: Academic Press.Google Scholar
Arp, A.J. & Childress, J.J., 1983. Sulfide binding by the blood of the hydrothermal vent tube worm Riftia pachyptila. Science, New York, 219, 295297.CrossRefGoogle ScholarPubMed
Auffret, M, 1988. Histopathological changes related to chemical contamination in Mytilus edulis from field and experimental conditions. Marine Ecology Progress Series, 46, 101107.CrossRefGoogle Scholar
Cavanaugh, C.M., Gardiner, S.L., Jones, M.L., Jannasch, H.W. & Waterbury, J.B., 1981. Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: possible chemoautotrophic symbionts. Science, New York, 213, 340342.CrossRefGoogle ScholarPubMed
Chassard-Bouchaud, C, Fiala-Medioni, A. & Galle, P., 1986. Etude microanalytique de Bathymodiolus sp. (Mollusque Lamellibranche Mytilidae) provenant des sources hydrothermales de la Ride du Pacifique oriental. Donnees preliminaries. Comptes Rendus de I'Academie des Sciences, Paris, serie III, 302, 117124.Google Scholar
Doeller, J.E., Kraus, D.W., Colacino, J.M. & Wittenberg, J.B., 1988. Gill hemoglobin may deliver sulfide to bacterial symbionts of Solemya velum (Bivalvia, Mollusca). Biological Bulletin. Marine Biological Laboratory, Woods Hole, 175, 388396.CrossRefGoogle Scholar
Felbeck, H., Childress, J.J. & Somero, G.N., 1981. Calvin-Benson cycle and sulphide oxidation enzymes in animals from sulphide rich habitats. Nature, London, 293, 291293.CrossRefGoogle Scholar
Fouquet, Y., Auclair, G., Cambon, P. & Etoubleau, J., 1988. Geological setting and mineralogical and geochemical investigations on sulfide deposits near 13°N on the East Pacific rise. Marine Geology, 84, 145178.CrossRefGoogle Scholar
Ghadially, F.N., 1982. Ultrastructural pathology of the cell and matrix. London: Butterworths.Google Scholar
Grasse, P., 1968. Traite de Zoologie, tome V, fascicule 2. Paris: Masson.Google Scholar
Hawkins, W.E., Howse, H.D. & Sarphie, T.G., 1980. Ultrastructure of the heart of the oyster Crassostrea gigas Gmelin. Journal of Submicroscopic Cytology, 12, 359374.Google Scholar
Kenk, V.C. & Wilson, B.R., 1985. A new mussel (Bivalvia, Mytilidae) from hydrothermal vents in the Galapagos rift zone. Malacologia, 26, 253271.Google Scholar
Moore, M.N., Bubel, A. & Lowe, D.M., 1980. Cytology and cytochemistry of the pericardial gland cells of Mytilus edulis and their lysosomal responses to injected horseradish peroxidase and anthracene. Journal of the Marine Biological Association of the United Kingdom, 60,135149.CrossRefGoogle Scholar
Pirie, B.J.S. & George, S.G., 1979. Ultrastructure of the heart and excretory system of Mytilus edulis (L.). Journal of the Marine Biological Association of the United Kingdom, 59, 819829.CrossRefGoogle Scholar
Schweimanns, M. & Felbeck, H., 1985. Significance of the occurrence of chemoautotrophic bacterial endosymbionts in lucinid clams from Bermuda. Marine Ecology Progress Series, 24, 113120.CrossRefGoogle Scholar
Seiler, G.R. & Morse, M.P., 1988. Kidney and hemocytes of Mya arenaria (Bivalvia): normal and pollution-related ultrastructural morphologies. Journal of Invertebrate Pathology, 52, 201214.CrossRefGoogle ScholarPubMed
Simkiss, K., Taylor, M. & Mason, A.Z., 1982. Metal detoxification and bioaccumulation in molluscs. Marine Biology Letters, 3,187201.Google Scholar
Thomas, D., Gouranton, J. & Boujard, D., 1981. Nuclear inclusions in the epithelial cells of the caput epididymidis of the dog; ultrastructure, nature and relations with androgens. Biology of the Cell, 42, 8796.Google Scholar