Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-03T03:08:55.141Z Has data issue: false hasContentIssue false

MHC class II expression in skin biopsies from the franciscana dolphin Pontoporia blainvillei and the southern right whale Eubalaena australis

Published online by Cambridge University Press:  20 January 2009

Larissa Heinzelmann*
Affiliation:
Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 91501-970, Brazil
Maurício Tavares
Affiliation:
Grupo de Estudos de Mamíferos Aquáticos do Rio Grande do Sul (GEMARS) Centro de Estudos Costeiros, Limnológicos e Marinhos (CECLIMAR–UFRGS)
Paulo H. Ott
Affiliation:
Grupo de Estudos de Mamíferos Aquáticos do Rio Grande do Sul (GEMARS) Centro de Estudos Costeiros, Limnológicos e Marinhos (CECLIMAR–UFRGS) Universidade Estadual do Rio Grande do Sul (UERGS)
Ignacio M.B. Moreno
Affiliation:
Grupo de Estudos de Mamíferos Aquáticos do Rio Grande do Sul (GEMARS) Centro de Estudos Costeiros, Limnológicos e Marinhos (CECLIMAR–UFRGS)
José Artur B. Chies
Affiliation:
Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 91501-970, Brazil
*
Correspondence should be addressed to: L. Heinzelmann, Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 91501-970, Brazil email: [email protected]

Abstract

Presently, there is no information about the functionality of the immune system in the franciscana dolphin (Pontoporia blainvillei), a small dolphin from southern Brazil. As in the case of the franciscana, the population of southern right whale (Eubalaena australis) which inhabits Brazilian waters has not yet been surveyed in what concerns MHC expression. For the first time it was possible to observe the DQB gene expression in skin of these two species of cetacean using RT-PCR. Skin pieces of the animals were collected to RNA extraction. The fragment corresponding to DQB exon 2 was amplified, cloned and sequenced. A total of five alleles were found, one to franciscana and four to southern right whale. The observed dN/dS ratio of 2.77 (P = 0.03) suggests that this gene is under balancing selection pressure (positive Darwinian selection). The sequences indicate that, in both species analysed, the DQB gene is functional.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990) Basic local alignment search tool. Journal of Molecular Biology 215, 403410.CrossRefGoogle ScholarPubMed
Baker, S.C., Vant, M.D., Delabout, M.L., Lento, G.M., O'Brien, S.J. and Yuhki, N. (2006) Diversity and duplication of DQB and DRB-like genes of the MHC in baleen whales (suborder: Mysticeti) Immunogenetics 58, 283296.CrossRefGoogle ScholarPubMed
Beineke, A., Siebert, U., Stott, J., Muller, G. and Baumgärtner, W. (2007) Phenotypical characterization of changes in thymus and spleen associated with lymphoid depletion in free-ranging harbor porpoises (Phocoena phocoena). Veterinary Immunolgy and Immunopathology 117, 254–65.CrossRefGoogle ScholarPubMed
Bernier, J., De Guise, S., Martineau, D., Beland, P., Beaudet, M. and Fournier, M. (2000) Purification of functional T lymphocytes from splenocytes of the beluga whales (Delphinapterus leucas). Developmental and Comparative Immunology 24, 653662.CrossRefGoogle ScholarPubMed
Bonfield, J.K., Smith, K.F. and Staden, R. (1995) A new DNA sequence assembly program. Nucleic Acids Research 24, 49924999.CrossRefGoogle Scholar
Brown, J.H., Jardetzhy, T.S., Gorga, J.C., Stern, L.J., Urban, R.G., Strominger, J.L. and Wiley, D.C. (1993) Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364, 3339.CrossRefGoogle ScholarPubMed
Danilewicz, D., Claver, J.A., Pérez Carrera, A.L., Secchi, E. and Fontoura, N.F. (2004) Reproductive biology of male franciscanas (Pontoporia blainvillei) (Mammalia: Cetacea) from Rio Grande do Sul, southern Brazil. Fishery Bulletin 102, 581592.Google Scholar
Gasteiger, E., Gattikerm, A., Hoogland, C., Ivanvi Appel, R.D. and Bairoch, A. (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Research 31, 37843788.CrossRefGoogle ScholarPubMed
Goodstadt, L. and Ponting, C.P. (2001) CHROMA: consensus-based coloring of multiple alignments for publication. Bioinformatics 17, 845846.CrossRefGoogle ScholarPubMed
Harvel, C.D., Kim, K., Burkholder, J.M., Colwel, R.R., Epstein, P.R., Grimes, D.J., Hofmann, E.E., Lipp, E.K., Osterhaus, O.D., Overstreet, R.M., Porter, J.W., Smith, G.W. and Vasta, G.R. (1999) Emerging marine disease—climate links and anthropogenic factors. Science 285, 15051510.CrossRefGoogle Scholar
Huges, A.L. and Nei, M. (1988) Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 335, 167170.CrossRefGoogle Scholar
IUCN (2006) Red List of Threatened Species: A Global Species Assessment. Gland, Switzerland and Cambridge, UK: IUCN. Available from http://www.iucnredlist.org/search/details.php/41761/all (accessed December 2006).Google Scholar
IWC (2001) Report of the Workshop on the Comprehensive Assessment of Right Whales: A Worldwide Comparison. Journal of Cetacean Research and Management (Special Issue) 2, 135.Google Scholar
King, D.P., Aldridge, B.M., Kennedy-Stoskopf, S. and Stott, J.L. (2001) CRC handbook of marine mammal medicine. 2nd edition. Boca Raton, FL: CRC Press.Google Scholar
Kumánovics, A., Takada, T. and Lindhal, K.F. (2003) Genomic organization of the mammalian MHC. Annual Review of Immunology 21, 629–57.CrossRefGoogle ScholarPubMed
Lázaro, M., Lessa, E.P. and Hamilton, H. (2004) Geographic genetic structure in the franciscana dolphin (Pontoporia blainvillei). Marine Mammal Science 20, 201214.CrossRefGoogle Scholar
Lehman, N., Decker, D.J. and Stewart, B.S. (2004) Divergent patterns of variation in major histocompatibility complex class II alleles among Antarctic phocid pinnipeds. Journal of Mammalogy 85, 12151224.CrossRefGoogle Scholar
MHC Sequencing Consortium (1999) Complete sequence and gene map of a human major histocompatibility complex. Nature 401, 921923.CrossRefGoogle Scholar
Martínez-Agüero, M., Flores-Ramírez, S. and Ruíz-Garcia, M. (2006) First report of major histocompatibility complex class II loci from the Amazon pink river dolphin (genus Inia). Genetics and Molecular Research 5, 421431.Google ScholarPubMed
Murray, B.W., Malik, S. and White, B.N. (1995) Sequence variation at the major histocompatibility complex locus DQB in beluga whales (Delphinapterus leucas). Molecular Biology and Evolution, 12, 582593.Google Scholar
Nei, M. and Gojobori, T. (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Molecular Biology and Evolution 3, 418426.Google ScholarPubMed
Secchi, E.R., Wang, J.Y., Murray, B.W., Rocha-Campos, C.C. and White, B.N. (1998) Population differentiation in the franciscana (Pontoporia blainvillei) from two geographic locations in Brazil as determined from mitochondrial DNA control region sequences. Canadian Journal of Zoology 76, 16221627.CrossRefGoogle Scholar
Secchi, E., Ott, P.H. and Danilewicz, D. (2003) Effects of fishing bycatch and the conservation status of the franciscana dolphin, Pontoporia blainvillei. In Gales, N., Hindell, M. and Kirkwood, R. (eds) Marine mammals: fisheries, tourism and management issues. Collingwood, Australia: CSIRO Publishing, pp. 174191.Google Scholar
Siciliano, S., Di Beneditto, A.P. and Ramos, R. (2002) A toninha, Pontoporia blainvillei (Gervais & d'Orbigny, 1844) (Mammalii, Cetacea, Pontoporiidae) nos estados do Rio de Janeiro e Espírito Santo, costa sudeste do Brasil: caracterizações dos habitats e fatores de isolamento das populações. Boletim do Museu Nacional, Zoologia 476, 115.Google Scholar
Slade, R.W. (1992) Limited MHC polymorphism in the southern elephant seal: implications for MHC evolution and marine mammal population biology. Proceedings of the Royal Society of London, Series B 249, 163171.Google ScholarPubMed
Spinsanti, G., Panti, C., Lazzeri, E., Marsili, L., Casini, S., Frati, F. and Fossi, C.M. (2006) Selection of reference genes for quantitative RT-PCR studies in striped dolphin (Stenella coeruleoalba) skin dolphins. BMC Molecular Biology 7, 32.CrossRefGoogle Scholar
Tamura, K., Dudley, J., Nei, M. and Kumar, S. (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 15961599.CrossRefGoogle ScholarPubMed
Taylor, W. (1986) The classification of amino acid conservation. Journal of Theoretical Biology 119, 205218.CrossRefGoogle ScholarPubMed
Yang, G., Yan, J., Zhou, K. and Wei, F. (2005) Sequence variation and gene duplication at MHC DQB loci of baiji (Lipotes vexilifer) a Chinese river dolphin. Journal of Heredity 96, 310317.CrossRefGoogle ScholarPubMed
Zabka, T. and Romano, T. (2003) Distribution of MHC II (+) cells in skin of the Atlantic bottlenose dolphin (Tursiops truncatus): an initial investigation of dolphin dendritic cells. The Anatomical Record, Part A 273A, 636647.CrossRefGoogle Scholar