Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-05T11:12:19.475Z Has data issue: false hasContentIssue false

Mechanical properties of Pinna adductor muscle

Published online by Cambridge University Press:  11 May 2009

B. C. Abbott
Affiliation:
From the Plymouth Laboratory and Department of Zoology, University of Belfast
J. Lowy
Affiliation:
From the Plymouth Laboratory and Department of Zoology, University of Belfast

Extract

It is well known that the smooth adductors of lamellibranch molluscs can hold the shells closed against the tension exerted by the elastic hinge ligament for prolonged periods without visible signs of fatigue. Two opposing hypotheses have been put forward to explain this phenomenon. One postulates that tonic contraction is a tetanic phenomenon and that the economy of lamellibranch smooth muscles is due to their slow speed of relaxation (Ritchie, 1928); whilst the other proposes the existence of a ‘catch mechanism’ which enables tension to be maintained without expenditure of energy, so that no excitation is needed during tonic contraction (Jordan, 1938).

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1956

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, B. C. & Lowy, J., 1953. Mechanical properties of Mytilus muscle. J. Physiol., Vol. 120, 50P.Google ScholarPubMed
Abbott, B. C. 1955. Heat production in a smooth muscle. J. Physiol. Vol. 130, 25P.Google Scholar
Attree, V. H., 1950. An electronic stimulator for biological research. J. sci. Instrum., Vol. 27, pp. 43–7.CrossRefGoogle Scholar
Aubert, X., Roquet, M. L. & Van Der Elst, J., 1951. The tension-length diagram of the frog's sartorius muscle. Arch. int. Physiol., Vol. 59, pp. 239–41.Google ScholarPubMed
Bandmann, H. J. & Reichel, H., 1954. Struktur und Mechanik des glatten Schliessmuskels von Pinna nobilis. Z. Biol., Bd. 107, pp. 6780.Google ScholarPubMed
Brecht, K., Utz, G. & Lutz, E., 1955. Über die Atmung quergesteifter und glatter Muskeln von Kaltblütern in Ruhe, Dehnung, Kontraktion und Kontraktur. Pflüg. Arch. ges. Physiol., Bd. 260, pp. 524–37.CrossRefGoogle Scholar
Hill, A. V., 1938. The heat of shortening and the dynamic constants of muscle. Proc. roy. Soc. B, Vol. 126, pp. 136–95.Google Scholar
Hill, A. V., 1949. The abrupt transition from rest to activity in muscle. Proc. roy. Soc. B, Vol. 136, pp. 399420.Google ScholarPubMed
Hoyle, G. & Lowy, J., 1956. The paradox of Mytilus muscle. A new interpretation. J. exp. Biol, Vol. 33, pp. 295311.CrossRefGoogle Scholar
Jordan, H. J., 1938. Die Physiologie des Tonus der Hohlmuskeln. Ergebn. Physiol., Bd. 40, pp. 437533.CrossRefGoogle Scholar
Lowy, J., 1953. Contraction and relaxation in the adductor muscles of Mytilus edulis. J. Physiol., Vol. 120, pp. 129–40.CrossRefGoogle ScholarPubMed
Pennant, , 1777. British Zoology, Vol. 4. Edition 4.Google Scholar
Reichel, H., 1952. Die Elastischen Eigenschaften des glatten Schliessmuskels von Pinna nobilis bei verschiedenen Tonuslängen unter statischen und dynamischen Bedingungen. Z. Biol., Bd. 105, pp. 162–9.Google Scholar
Reichel, H., 1955. Über die Temperaturabhängigkeit der Spannung im Zustand des Tonus und der Kontraktur im glatten Schliessmuskel von Pinna nobilis. Pubbl. Staz. zool. Napoli, Vol. 27, pp. 73–9.Google Scholar
Ritchie, A. D., 1928. The Comparative Physiology of Muscular Tissue, 111 pp. Cambridge University Press.Google Scholar
Wilkie, D. R., 1954. Facts and theories about muscle. Progress in Biophysics and Biophysical Chemistry, Vol. 4, pp. 288324. London: Pergamon Press.Google Scholar