Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-22T18:14:52.668Z Has data issue: false hasContentIssue false

Macroinfaunal recovery on the beach most severely affected by the ‘Prestige’ oil spill (O Rostro, Galicia, north-west Spain)

Published online by Cambridge University Press:  14 October 2013

J. Junoy*
Affiliation:
Departamento de Ciencias de la Vida, Universidad de Alcalá, E-28871 Alcalá de Henares, Spain UE-US Marine Biodiversity Research Group, Instituto Franklin, Universidad de Alcalá, E-28871 Alcalá de Henares, Spain
C. Castellanos
Affiliation:
Departamento de Ciencias de la Vida, Universidad de Alcalá, E-28871 Alcalá de Henares, Spain
R. Bernardo-Madrid
Affiliation:
Departamento de Ciencias de la Vida, Universidad de Alcalá, E-28871 Alcalá de Henares, Spain
R. Riera
Affiliation:
Centro de Investigaciones Medioambientales del Atlántico (CIMA SL), Arzobispo Elías Yanes 44, E-38206 La Laguna, Tenerife, Canary Islands, Spain
J.M. Viéitez
Affiliation:
Departamento de Ciencias de la Vida, Universidad de Alcalá, E-28871 Alcalá de Henares, Spain
*
Correspondence should be addressed to: J. Junoy, Departamento de Ciencias de la Vida, Universidad de Alcalá, E-28871 Alcalá de Henares, Spain email: [email protected]

Abstract

Exposed sandy beaches are widespread coastal habitats with temporal and spatial variability. O Rostro beach (Galicia, north-west Spain) was the most severely affected beach in the ‘Prestige’ oil spill (November 2002). Monitoring sampling was conducted to study macroinfaunal composition and structure after the oil spill episode. The purpose of this survey was to characterize macroinfaunal variations on the beach over a yearly scale (2003–2007) and determine the recovery period. These data are compared with the only available data collected before the spill (1995). Two zones where identified with different recovery trends: (1) supralittoral, occupied either by talitrid amphipods, oniscoidean isopods and insects; and (2) intertidal, where marine crustaceans prevailed. Beach morphodynamics partially buried the oil, which gradually reappeared and was dragged to the coast. Negative ecological effects were observed in the short term (six months after the 2002 spill) but macroinfauna apparently recovered in the following years (2004–2007), showing that macroinfaunal assemblages of this beach are resilient enough to recover after severe stress.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, M.J. (2005) PERMANOVA: a FORTRAN computer program for permutational multivariate analysis of variance. Department of Statistics, University of Auckland, New Zealand, 24 pp.Google Scholar
Bernabeu, A.M., Nuez de la Fuente, N., Rey, D., Rubio, B., Vilas, F., Medina, R. and González, M.E. (2006) Beach morphodynamics forcements in oiled shorelines: coupled physical and chemical processes during and after fuel burial. Marine Pollution Bulletin 52, 11561168.CrossRefGoogle ScholarPubMed
Borja, Á., Franco, J. and Pérez, V. (2000) A marine biotic index to establish the ecological quality of soft-bottom benthos within European estuarine and coastal environments. Marine Pollution Bulletin 40, 11001114.CrossRefGoogle Scholar
Borja, Á., Muxika, I. and Franco, J. (2003) The application of a Marine Biotic Index to different impact sources affecting soft-bottom benthic communities along European coasts. Marine Pollution Bulletin 46, 835845.CrossRefGoogle ScholarPubMed
Bray, J.R. and Curtis, J.T. (1957) An ordination of upland forest communities of southern Wisconsin. Ecological Monographs 27, 325349.CrossRefGoogle Scholar
Brazeiro, A. and Defeo, O. (1996) Macroinfauna zonation in microtidal sandy beaches: is it possible to identify patterns in such variable environments? Estuarine, Coastal and Shelf Science 42, 523536.CrossRefGoogle Scholar
Brown, A.C. and McLachlan, A. (2002) Sandy shore ecosystems and the threats facing them: some predictions for the year 2025. Environmental Conservation 29, 6277.CrossRefGoogle Scholar
Buchanan, J.B. (1984) Sediment analysis. In Holme, N.A. and McIntyre, A.D. (eds) Methods for the study of marine benthos. Oxford: Blackwell Scientific, pp. 4165.Google Scholar
CEPRECO (Centro para la Prevención y Lucha contra la Contaminación Marítima y del Litoral) (2006) Contaminación de las playas por derrame de hidrocarburos: influencia de la dinámica marina. Madrid: Ministerio de la Presidencia, 130 pp.Google Scholar
Clark, R.B. (1982) The long-term effect of oil pollution on marine populations, communities and ecosystems: some questions. Philosophical Transactions of the Royal Society of London, B 297, 185192.Google Scholar
Clarke, K.R. and Gorley, R.N. (2006) PRIMER v. 6: user manual/tutorial. Plymouth: PRIMER-E.Google Scholar
Clarke, K.R. and Green, R.H. (1988) Statistical design and analysis for a ‘biological effects’ study. Marine Ecology Progress Series 46, 213226.CrossRefGoogle Scholar
De la Huz, R., Lastra, M., Junoy, J., Castellanos, C. and Viéitez, J.M. (2005) Biological impacts of oil pollution and cleaning in the intertidal zone of exposed sandy beaches: preliminary study of the ‘Prestige’ oil spill. Estuarine, Coastal and Shelf Science 65, 1929.CrossRefGoogle Scholar
Emery, K.O. (1961) A simple method of measuring beach profiles. Limnology and Oceanography 6, 9093.CrossRefGoogle Scholar
Feder, H.M. and Blanchard, A. (1998) The deep benthos of Prince William Sound, Alaska, sixteen months after the Exxon Valdez oil spill. Marine Pollution Bulletin 36, 118130.CrossRefGoogle Scholar
Fukuyama, A.K., Shigenaka, G. and VanBlaricom, G.R. (1998) Oil spill impacts and the biological basis for response guidance: an applied synthesis of research on three subarctic intertidal communities. NOAA Technical Memorandum NOS ORCA 125, Hazardous Materials Response and Assessment Division, National Oceanic and Atmospheric Administration, Seattle, 73 pp.Google Scholar
Gómez-Gesteira, J.L. and Dauvin, J.C. (2000) Amphipods are good bioindicators of the impact of oil-spills on soft-bottom macrobenthic communities. Marine Pollution Bulletin 40, 10171027.CrossRefGoogle Scholar
Gómez-Gesteira, J.L. and Dauvin, J.C. (2005) Impact of the Aegean Sea oil spill on the subtidal fine sand macrobenthic community of the Ares-Betanzos Ría (Northwest Spain). Marine Environmental Research 60, 289316.CrossRefGoogle Scholar
Gómez-Gesteira, J.L., Dauvin, J.C. and Salvande-Fraga, M. (2003) Taxonomic level for assessing oil-spill effects on soft-bottom sublittoral benthic communities. Marine Pollution Bulletin 46, 562572.CrossRefGoogle ScholarPubMed
González, M., Medina, R., Bernabeu, A.M. and Novóa, X. (2009) Influence of beach morphodynamics in the deep burial of fuel in beaches. Journal of Coastal Research 25, 799818.CrossRefGoogle Scholar
Green, R.H. and Montagna, P. (1996) Implications for monitoring study designs and interpretation of results. Canadian Journal of Fisheries Aquatic Sciences 53, 26292636.CrossRefGoogle Scholar
Hernández-Arana, H.A., Warwick, R.M., Attrill, M.J., Rowden, A.A. and Gold-Bouchot, G. (2005) Assessing the impact of oil-related activities on benthic macroinfauna assemblages of the Campeche shelf, southern Gulf of Mexico. Marine Ecology Progress Series 289, 89107.CrossRefGoogle Scholar
Jaramillo, E. (1994) Patterns of species richness in sandy beaches of South America. South African Journal of Zoology 29, 227234.CrossRefGoogle Scholar
Jaramillo, E., McLachlan, A. and Coetzee, P. (1993) Intertidal zonation patterns of macroinfauna over a range of exposed sandy beaches in south-central Chile. Marine Ecology Progress Series 101, 105118.CrossRefGoogle Scholar
Jones, A.R., Gladston, Q. and Hacking, N.J. (2007) Australian sandy-beach ecosystems and climate change: ecology and management. Australian Zoologist 34, 190202.CrossRefGoogle Scholar
Jones, D.A. and Pierpoint, C.J. (1997) Ecology and taxonomy of the genus Eurydice (Isopoda: Cirolanidae) from sand beaches on the Iberian peninsula. Journal of the Marine Biological Association of the United Kingdom 77, 5576.CrossRefGoogle Scholar
Junoy, J., Castellanos, C., Viéitez, J.M., de la Huz, M.R. and Lastra, M. (2005) The macroinfauna of the Galician sandy beaches (NW Spain) affected by the Prestige oil-spill. Marine Pollution Bulletin 50, 526536.CrossRefGoogle ScholarPubMed
Junoy, J. and Viéitez, J.M. (1992) Macrofaunal abundance analyses in the Ría de Foz (Lugo, Northwest Spain). Cahiers de Biologie Marine 33, 331345.Google Scholar
Kingston, P.F., Dixon, I.M.T., Hamilton, S. and Moore, D.C. (1995) The impact of the Brauer oil-spill on the macrobenthic infauna of the sediments off the Shetland Islands. Marine Pollution Bulletin 30, 445459.CrossRefGoogle Scholar
Kruskal, J.B. and Wish, M. (1978) Multidimensional scaling. Beverly Hills, CA and London: Sage Publications (Sage University Paper series on Quantitative Application in the Social Sciences, 07–011).CrossRefGoogle Scholar
Laborda, A.J. (1987) Autoecología de la macrofauna de la playa de Covas. II. Poliquetos sedentarios. Boletín del Instituto Español de Oceanografía 4, 4760.Google Scholar
Lastra, M., de la Huz, R., Sánchez-Mata, A.G., Rodil, I.F., Aerts, K., Beloso, S. and López, J. (2006) Ecology of exposed sandy beaches in northern Spain: environmental factors controlling macrofauna communities. Journal of Sea Research 55, 128140.CrossRefGoogle Scholar
McLachlan, A. (1983) Sandy beach ecology. A review. In McLachlan, A. and Erasmus, T. (eds) Sandy beaches as ecosystems. The Hague: Junk, pp. 321380.CrossRefGoogle Scholar
McLachlan, A. (1990) Dissipative beaches and macrofauna communities on exposed intertidal sands. Journal of Coastal Research 6, 5771.Google Scholar
McLachlan, A. and Dorvlo, A. (2005) Global patterns in sandy beach macrobenthic communities. Journal of Coastal Research 21, 674687.CrossRefGoogle Scholar
McLachlan, A. and Jaramillo, E. (1995) Zonation on sandy beaches. Oceanography and Marine Biology: an Annual Review 33, 305335.Google Scholar
Peterson, C.H. (2001) The ‘Exxon Valdez’ oil spill in Alaska: acute, indirect and chronic effects on the ecosystem. Advances in Marine Biology 39, 1103.CrossRefGoogle Scholar
Pielou, E.C. (1975) Ecological diversity. New York: Wiley.Google Scholar
Pollock, L.W. and Hummon, W.D. (1971) Cyclic changes in interstitial water content, atmospheric exposure and temperature in a marine beach. Limnology and Oceanography 16, 522535.CrossRefGoogle Scholar
Puente, A., Juanes, J.A., Calderón, G., Echavarri-Erasun, B., García, A. and García-Castrillo, G. (2009) Medium-term assessment of the effects of the Prestige oil spill on estuarine benthic communities in Cantabria (Northen Spain, Bay of Biscay). Marine Pollution Bulletin 58, 487495.CrossRefGoogle Scholar
Puente, A., Juanes, J.A., García, A., Álvarez, C., Revilla, J.A. and Carranza, I. (2008) Ecological assessment of soft bottom benthic communiteis in northern Spanish estuaries. Ecological Indicators 8, 373388.CrossRefGoogle Scholar
Salvat, B. (1964) Les conditions hydrodynamiques interstitielles des sédiments meubles intertidaux et la repartition verticale de la faune endogée. Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences 259, 15751964.Google Scholar
Salvat, B. (1967) La macrofaune carcinologique endogée des sédiments muebles intertidaux (Tanaidacea, Isopodes et Amphipodes), ethologie, bionomie et cycle biologique. Mémoires du Muséum National d'Histoire Naturelle, Ser. A, Zoologie XLV, 275 pp.Google Scholar
Serrano, A., Sánchez, F., Preciado, I., Parra, S. and Frutos, I. (2006) Spatial and temporal changes in benthic communities of thte Galician continental shelf after the Prestige oil spill. Marine Pollution Bulletin 53, 315331.CrossRefGoogle Scholar
Short, A.D. (1999) Handbook of beach and shoreface morphodynamics. London: John Wiley, 379 pp.Google Scholar
Souza, J.R.B. and Borzone, C.A. (2000) Population dynamics and secondary production of Scolelepis squamata (Polychaeta: Spionidae) in an exposed sandy beach of southern Brazil. Bulletin of Marine Science 67, 221233.Google Scholar
Spies, R.B. (1987) The biological effects of petroleum hydrocarbons in the sea: assessments from the field and microcosms. In Boesch, D.F. and Rabalais, N.N. (eds) Long-term environmental effects of offshore oil and gas development. London: Elsevier Applied Science, pp. 411467.Google Scholar
SPSS (1999) Statistical package of the social sciences, vol. 10.0. Chicago, IL: SPSS Inc.Google Scholar
Tabachnick, B.G. and Fidell, L.S. (2001) Using multivariate statistics. 4th edition. Needham Heights, MA: Allyn & Bacon.Google Scholar
Underwood, A.J. (1991) Beyond BACI: experimental designs for detecting human impacts on temporal variations in natural populations. Australian Journal of Marine and Freshwater Research 42, 569587.CrossRefGoogle Scholar