Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T15:13:56.548Z Has data issue: false hasContentIssue false

Life history characters and population dynamics of the boreal larvacean Oikopleura vanhoeffeni (Tunicata) in Conception Bay, Newfoundland

Published online by Cambridge University Press:  09 December 2010

Nami Choe*
Affiliation:
Ocean Sciences Centre, Memorial University of Newfoundland, St John's, Newfoundland, Canada, A1C 5S7
Don Deibel
Affiliation:
Ocean Sciences Centre, Memorial University of Newfoundland, St John's, Newfoundland, Canada, A1C 5S7
*
Correspondence should be addressed to: N. Choe, Ocean Sciences Centre, Memorial University of Newfoundland, St John's, Newfoundland, Canada, A1C 5S7 email: [email protected]

Abstract

We examined the population dynamics and life history characters of the boreal larvacean Oikopleura vanhoeffeni in Conception Bay over two years and determined its role in secondary production. Based on the analysis of age structure inferred from statolith diameter, the generation time was approximately one year. Recruitment of new cohorts and maximum population growth rate occurred in the spring. Somatic growth rate was 0.017 d−1 from the year 2001 to 2002 and 0.043 d−1 from 2002 to 2003, with an acceleration in growth rate during April in response to the spring diatom bloom despite the coldest water temperatures. The annual production rate (i.e. somatic + house production) of 8.7 g C m−2 y−1 in 2001/2, and 3.8 g C m−2 y−1 in 2002/3, represented 2.9–6.7% of primary production and 37–87% of estimated mesozooplankton production, suggesting that O. vanhoeffeni is a major secondary producer in Conception Bay. Individuals matured at seasonally variable body size throughout the year and potential fecundity peaked as the individuals matured at their largest body size during the spring bloom, most likely resulting in maximum egg production and population growth rates at that time of year. Thus, a seasonal pulse of food is a major driving force that regulates the variation in life history characters and population dynamics of the boreal O. vanhoeffeni.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Acuña, J.L., Deibel, D. and Morris, C.C. (1996) Particle capture mechanism of the pelagic tunicate Oikopleura vanhoeffeni. Limnology and Oceanography 41, 18001814.CrossRefGoogle Scholar
Acuña, J.L., Deibel, D., Saunders, P.A., Booth, B., Hatfield, E., Klein, B., Mei, Z.P. and Rivkin, R. (2002) Phytoplankton ingestion by appendicularians in the North Water. Deep-Sea Research II 49, 51015115.CrossRefGoogle Scholar
Alden, R.W. (1982) A method for the enumeration of zooplankton subsamples. Journal of Experimental Marine Biology and Ecology 59, 185206.CrossRefGoogle Scholar
Alldredge, A.L. (1981) The impact of appendicularian grazing on natural food concentrations in situ. Limnology and Oceanography 26, 247257.CrossRefGoogle Scholar
Alldredge, A.L. (2005) The contribution of discarded appendicularian houses to the flux of particulate organic carbon from ocean surface waters. In Gorsky, G., Youngbluth, M.J. and Deibel, D. (eds) Response of marine ecosystems to global change: ecological impact of appendicularians. Paris: Contemporary Publishing International, pp. 309326.Google Scholar
Alvarez-Cadena, J.N. (1992) Feeding habitats, gonadic stages and size–frequency distribution of Sagitta setosa J. Müller to the east of the Isle of Man, North Irish Sea. Anales del Instituto de Ciencias del Mar y Limnologia, Universidad Nacional Autonoma de México 19, 215222.Google Scholar
Atkinson, D. (1994) Temperature and organism size: a biological law for ectotherms? Advances in Ecological Research 25, 158.CrossRefGoogle Scholar
Azam, F., Fenchel, T., Field, J.G., Gray, J.S., Meyer-Reil, L.A. and Thingstad, F. (1983) The ecological role of water column microbes in the sea. Marine Ecology Progress Series 10, 257263.CrossRefGoogle Scholar
Bhattacharya, C.G. (1967) A simple method of resolution of a distribution into Gaussian components. Biometrics 23, 115135.CrossRefGoogle ScholarPubMed
Brey, T. and Gerdes, D. (1998) High Antarctic macrobenthic community production. Journal of Experimental Marine Biology and Ecology 231, 191299.CrossRefGoogle Scholar
Choe, N. and Deibel, D. (2000) Seasonal vertical distribution and population dynamics of the chaetognath Parasagitta elegans in the water column and hyperbenthic zone of Conception Bay, Newfoundland. Marine Biology 137, 847856.CrossRefGoogle Scholar
Choe, N. and Deibel, D. (2008) Temporal and vertical distributions of three appendicularian species (Tunicata) in Conception Bay, Newfoundland. Journal of Plankton Research 30, 969979.CrossRefGoogle Scholar
Choe, N. and Deibel, D. (2009) Statolith diameter as an age indicator in the planktonic tunicate Oikopleura vanhoeffeni: variability in age-specific growth patterns in Conception Bay, Newfoundland. Journal of Experimental Marine Biology and Ecology 375, 8998.CrossRefGoogle Scholar
Clarke, W.G. (1981) Restricted least-square estimates of age composition from length composition. Canadian Journal of Fisheries and Aquatic Sciences 38, 297307.CrossRefGoogle Scholar
Clarke, C. and Roff, J.C. (1990) Abundance and biomass of herbivorous zooplankton off Kingston, Jamaica, with estimates of their annual production. Estuarine, Coastal and Shelf Science 31, 423437.CrossRefGoogle Scholar
Dagg, M.J., Sato, R., Liu, H., Bianchi, T. and Green, R. (2008) Microbial food web contributions to bottom water hypoxia in the northern Gulf of Mexico. Continental Shelf Research 28, 11271137.CrossRefGoogle Scholar
Davis, C.C. (1982) A preliminary quantitative study of the zooplankton from Conception Bay, insular Newfoundland, Canada. Internationale Revue der Gesamten Hydrobiologie 67, 713747.Google Scholar
Davis, C.C. (1986) A comparison of the zooplankton in two Newfoundland bays with differing influences from major currents. Internationale Revue der Gesamten Hydrobiologie 71, 1147.CrossRefGoogle Scholar
Deibel, D. (1986) Feeding mechanism and house of the appendicularian Oikopleura vanhoeffeni. Marine Biology 93, 429436.CrossRefGoogle Scholar
Deibel, D. (1988) Filter feeding by Oikopleura vanhoeffeni: grazing impact on suspended particles in cold ocean waters. Marine Biology 99, 177186.CrossRefGoogle Scholar
Deibel, D. and Turner, J.T. (1985) Zooplankton feeding ecology: contents of fecal pellets of the appendicularian Oikopleura vanhoeffeni. Marine Ecology Progress Series 27, 6778.CrossRefGoogle Scholar
Deibel, D., Cavaletto, J.F., Riehl, M. and Gardner, W.S. (1992) Lipid and lipid class content of the pelagic tunicate Oikopleura vanhoeffeni. Marine Ecology Progress Series 88, 297302.CrossRefGoogle Scholar
Diggle, P.J. (1990) Time series: a biostatistical introduction. Oxford: Oxford University Press, pp. 1930.CrossRefGoogle Scholar
Feigenbaum, D. (1982) Feeding by the chaetognath Sagitta elegans, at low temperatures in Vineyard Sound, Massachusetts. Limnology and Oceanography 27, 699706.CrossRefGoogle Scholar
Fenaux, R. (1976) Cycle vital d'un Appendiculaire: Oikopleura dioica Fol, 1872. Description et chronologie. Annales de l'Institut Océanographique, Paris (N.S.) 52, 89107.Google Scholar
Fenaux, R. and Gorsky, G. (1981) La fécundité de l'Appendiculaire Oikopleura dioica Fol, 1872. Rapports et Procés-Verbaux des Réunions—Commission Internationale pour l'Exploration Scientifique de la Mer Méditerranée 27, 195196.Google Scholar
Fenaux, R., Bone, Q. and Deibel, D. (1998) Appendicularian distribution and zoogeography. In Bone, Q. (ed.) The biology of pelagic tunicates. Oxford: Oxford University Press, pp. 251264.CrossRefGoogle Scholar
Flood, P.R., Deibel, D. and Morris, C.C. (1992) Filtration of colloidal melanin from sea water by planktonic tunicates. Nature 355, 630632.CrossRefGoogle Scholar
Frank, K.T. and Leggett, W.C. (1983) Multispecies larval fish associations: accident or adaptation. Canadian Journal of Fisheries and Aquatic Sciences 40, 754762.CrossRefGoogle Scholar
Frost, N., Lindsay, S.T. and Thompson, H. (1932) Hydrographic and biological investigations. Report of the Newfoundland Fishery Research Committee 2, 5874.Google Scholar
Galt, C.P. (1970) Population composition and annual cycle of larvacean tunicates in Elliot Bay, Puget Sound. MS thesis. University of Washington, Seattle, USA.Google Scholar
Ganot, P., Bouquet, J-M., Kallesøe, T. and Thompson, E.M. (2007a) The Oikopleura coenocyst, a unique chordate germ cell permitting rapid, extensive modulation of oocyte production. Developmental Biology 302, 591600.CrossRefGoogle ScholarPubMed
Ganot, P., Kallesøe, T. and Thompson, E.M. (2007b) The cytoskeleton organizes germ nuclei with divergent fates and asynchronous cycles in a common cytoplasm during oogenesis in the chordate Oikopleura. Developmental Biology 302, 577590.CrossRefGoogle Scholar
Ganot, P., Moosmann-Schulmeister, A. and Thompson, E.M. (2008) Oocyte selection is concurrent with meiosis resumption in the coenocystic oogenesis of Oikopleura. Developmental Biology 324, 266276.CrossRefGoogle ScholarPubMed
Gillooly, J.F. (2000) Effect of body size and temperature on generation time in zooplankton. Journal of Plankton Research 22, 241251.CrossRefGoogle Scholar
Gorsky, G. and Fenaux, R. (1998) The role of Appendicularia in marine food webs. In Bone, Q. (ed.) The biology of pelagic tunicates. Oxford: Oxford University Press, pp. 161170.CrossRefGoogle Scholar
Grainger, E.H. (1959) The annual oceanographic cycle at Igloolik in the Canadian Arctic. I. The zooplankton and physical and chemical observations. Journal of the Fisheries Research Board of Canada 16, 453510.CrossRefGoogle Scholar
Hasselblad, V. (1966) Estimation of parameters for a mixture of normal distributions. Technometrics 8, 431444.CrossRefGoogle Scholar
Hopcroft, R.R. (2005) Diversity in larvaceans: how many species? In Gorsky, G., Youngbluth, M.J. and Deibel, D. (eds) Response of marine ecosystems to global change: ecological impact of appendicularians. Paris: Contemporary Publishing International, pp. 4558.Google Scholar
Hopcroft, R.R. and Roff, J.C. (1995) Zooplankton growth rates; extraordinary production by the larvacean Oikopleura dioica in tropical waters. Journal of Plankton Research 17, 205220.CrossRefGoogle Scholar
Hopcroft, R.R. and Roff, J.C. (1998) Production of tropical larvaceans in Kingston Harbour, Jamaica: are we ignoring an important secondary producer? Journal of Plankton Research 20, 557569.CrossRefGoogle Scholar
Hopcroft, R.R., Roff, J.C. and Bouman, H.A. (1998) Zooplankton growth rates: the larvaceans Appendicularia, Fritillaria and Oikopleura in tropical waters. Journal of Plankton Research 20, 539555.CrossRefGoogle Scholar
Lalli, C.M. and Parsons, T.R. (1993) Biological oceanography; an introduction. Oxford: Pergamon Press.Google Scholar
Laprise, R. and Pepin, P. (1995) Factors influencing the spatio-temporal occurrence of fish eggs and larvae in a northern physically dynamic coastal environment. Marine Ecology Progress Series 122, 7392.CrossRefGoogle Scholar
Last, J.M. (1972) Egg development, fecundity and growth of Oikopleura dioica Fol in the North Sea. ICES Journal of Marine Science 34, 232237.CrossRefGoogle Scholar
Lohmann, H. (1895) Ueber die Verbreitung der Appendicularien im Atlantischen Oceane. Verhandlungen der Gesellschaft Deutscher Naturforscher und Ärzte 67, 113120.Google Scholar
Lombard, F., Renaud, F., Sainsbury, C., Sciandra, A. and Gorsky, G. (2009) Appendicularian ecophysiology I. Food concentration dependent clearance rate, assimilation efficiency, growth and reproduction of Oikopleura dioica. Journal of Marine Systems 78, 606616.CrossRefGoogle Scholar
López-Urrutia, Á., Acuña, J.L., Irigoien, X. and Harris, R. (2003) Food limitation and growth in temperate epipelagic appendicularians (Tunicata). Marine Ecology Progress Series 252, 143157.CrossRefGoogle Scholar
Maar, M., Nielsen, T.G., Gooding, S., Tönnesson, K., Tiselius, P., Zervoudaki, S., Christou, E., Sell, A. and Richardson, K. (2004) Trophodynamic function of copepods, appendicularians and protozooplankton in the late summer zooplankton community in Skagerrak. Marine Biology 144, 917933.Google Scholar
McNew, R.W. and Summerfelt, R.C. (1978) Evaluation of a maximum-likelihood estimator for analysis of length–frequency distributions. Transactions of the American Fisheries Society 107, 730736.2.0.CO;2>CrossRefGoogle Scholar
Motoda, S. (1959) Devices of simple plankton apparatus. Memoires of the Faculty of Fisheries Hokkaido University 7, 7394.Google Scholar
Nakamura, Y., Suzuki, K., Suzuki, S. and Hiromi, J. (1997) Production of Oikopleura dioica (Appendicularia) following a picoplankton ‘bloom’ in a eutrophic coastal area. Journal of Plankton Research 19, 113124.CrossRefGoogle Scholar
Odum, E.P. (1971) Fundamentals of ecology. 3rd edition. Philadelphia, PA: W.B. Saunders & Co.Google Scholar
Paffenhöfer, G.A. (1976) On the biology of Appendicularia of the southeastern North Sea. In Personne, G. and Jaspers, E. (eds) Proceedings of the 10th European Symposium on Marine Biology, Ostend, Belgium, 17–23 September 1975. Wetteren: Universal Press, pp. 437455.Google Scholar
Pauly, D. and Christensen, V. (1995) Primary production required to sustain global fisheries. Nature 374, 255257.CrossRefGoogle Scholar
Purcell, J.E., Sturdvant, M.V. and Galt, C.P. (2005) A review of appendicularians as prey of invertebrate and fish predators. In Gorsky, G., Youngbluth, M.J. and Deibel, D. (eds) Response of marine ecosystems to global change: ecological impact of appendicularians. Paris: Contemporary Publishing International, pp. 359435.Google Scholar
Ray, C. (1960) The application of Bergmann's and Allen's rule to the poikilotherms. Journal of Morphology 106, 85108.CrossRefGoogle Scholar
Riehl, M.W. (1992) Elemental analyses of oikopleurids and factors affecting house production rates of Oikopleura vanhoeffeni (Tunicata, Appendicularia) in coastal Newfoundland waters. MS thesis. Memorial University of Newfoundland, St John's, Canada.Google Scholar
Robison, B.H., Reisenbichler, K.R., and Sherlock, R.E. (2005) Giant larvacean houses: rapid carbon transport to the deep sea floor. Science 308, 16091611.CrossRefGoogle Scholar
Sato, R., Tanaka, Y. and Ishimaru, T. (2001) House production by Oikopleura dioica (Tunicata, Appendicularia) under laboratory conditions. Journal of Plankton Research 23, 415423.CrossRefGoogle Scholar
Sato, R., Yu, J., Tanaka, Y. and Ishimaru, T. (1999) New apparatus for cultivation of appendicularians. Plankton Biology and Ecology 46, 162164.Google Scholar
Sato, R., Ishibashi, Y., Tanaka, Y., Ishimaru, T. and Dagg, M. (2008) Productivity and grazing impact of Oikopleura dioica (Tunicata, Appendicularia) in Tokyo Bay. Journal of Plankton Research 30, 299309.CrossRefGoogle Scholar
Shaw, R.F. and Bercaw, B.L. (1962) Temperature and life-span in poikilothermous animals. Nature 196, 454457.CrossRefGoogle ScholarPubMed
Shiga, N. (1976) Maturity stages and relative growth of Oikopleura labradoriensis (Tunicata, Appendicularia). Bulletin of Plankton Society of Japan 23, 8195.Google Scholar
Shiga, N. (1993a) First record of the appendicularian Oikopleura vanhoeffeni in the Northern Bering Sea. Bulletin of Plankton Society of Japan 39, 107115.Google Scholar
Shiga, N. (1993b) Regional and vertical distributions of Oikopleura vanhoeffeni on the Northern Bering Sea shelf in summer. Bulletin of Plankton Society of Japan 39, 117126.Google Scholar
Sparre, P. and Venema, S.C. (1998) Introduction to tropical fish stock assessment. Part I: Manual. FAO Fisheries Technical Paper No. 306.1, Rev. 2Google Scholar
Tian, R., Deibel, D., Thompson, R.J. and Rivkin, R.B. (2003) Modelling of climate forcing on a cold-ocean ecosystem, Conception Bay, Newfoundland. Marine Ecology Progress Series 262, 117.CrossRefGoogle Scholar
Tomita, M., Ikeda, T. and Shiga, N. (1999) Production of Oikopleura longicauda (Tunicata: Appendicularia) in Toyama Bay, southern Japan Sea. Journal of Plankton Research 21, 24212430.CrossRefGoogle Scholar
Troedsson, C., Bouquet, J.M., Aksnes, D.L. and Thompson, E.M. (2002) Resource allocation between somatic growth and reproductive output in the pelagic chordate Oikopleura dioica allows opportunistic response to nutritional variation. Marine Ecology Progress Series 243, 8391.CrossRefGoogle Scholar
Urban, J.L., McKenzie, C.H. and Deibel, D. (1992) Seasonal differences in the content of Oikopleura vanhoeffeni and Calanus finmarchicus fecal pellets: illustrations of plankton food web shifts in coastal Newfoundland waters. Marine Ecology Progress Series 84, 255264.CrossRefGoogle Scholar
Urban-Rich, J., Fernández, D. and Acuña, J.L. (2006) Grazing impact on chromorphic dissolved organic matter (CDOM) by the larvacean Oikopleura dioica. Marine Ecology Progress Series 317, 101110.CrossRefGoogle Scholar
Uye, S. and Ichino, S. (1995) Seasonal variation in abundance, size composition, biomass and production rate of Oikopleura dioica (Fol) (Tunicata: Appendicularia) in a temperate eutrophic inlet. Journal of Experimental Marine Biology and Ecology 189, 111.CrossRefGoogle Scholar
Ware, D.M. (2000) Aquatic ecosystems: properties and models. In Harrison, P.J. and Parsons, T.R. (eds) Fisheries oceanography: an integrative approach to fisheries ecology and management. Oxford: Blackwell Science, pp. 161206.Google Scholar
Waters, T.F. (1977) Secondary production in inland waters. Advances in Ecological Research 10, 91164.CrossRefGoogle Scholar