Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-03T06:52:14.907Z Has data issue: false hasContentIssue false

Karyotypic Differences Between Two Species of Pomatoceros, P. Triqueter and P. Lamarckii (Polychaeta: Serpulidae)

Published online by Cambridge University Press:  11 May 2009

D.R. Dixon
Affiliation:
Southampton Oceanography Centre, Empress Dock, Southampton, SO14 3ZH.
P.L. Pascoe
Affiliation:
Plymouth Marine Laboratory, Citadel Hill, Plymouth, PL1 2PB.
L.R.J. Dixon
Affiliation:
Plymouth Marine Laboratory, Citadel Hill, Plymouth, PL1 2PB. Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, PL1 2PB

Extract

Consistent with most other closely-related polychaete species which have been analysed cytogenetically to-date, Pomatoceros triqueter and P. lamarckii share an identical chromosome number (2n=24) and have a number of other karyotypic features in common. However, commensurate with their separate species status, their karyotypes differ at least in four chromosome positions as a result of structural chromosomal rearrangements. With a rDNA probe using the FISH technique, we have been able to demonstrate that the nucleolar organizer region (NOR) occurs at the same site on the same pair of chromosomes in the two species, which indicates that an inversion event is unlikely to have been the cause of the species variation in this particular case. Taken together, these karyotypic differences may be indicative of a chromosomal barrier to the formation of fertile offspring; an important feature for maintaining species integrity where the two forms occur sympatrically, such as in parts of south-west England.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Carson, H.L., 1982. Speciation as a major reoganization of polygenic balances. In Mechanisms of speciation (ed. C., Barigozzi), pp. 411433. New York: Alan R. Liss.Google Scholar
Castric-Fey, A., 1983. Recrutement, croissance et longévité de Pomatoceros triqueter et de Pomatoceros lamarckii sur plaques expérimentales en baie de Concarneau (Sud-Finistere). Annales de l'Institute Océanographique, Paris, 59, 6991.Google Scholar
Christensen, B., 1980. Annelida. In Animal cytogenetics (ed. B., John et al.), pp. 181. Berlin: Gebruder Borntraeger.Google Scholar
Crisp, D.J., 1965. The ecology of marine fouling. In Ecology and the industrial society. Proceedings of the Fifth Symposium of the British Ecological Society, Swansea, 13–16 April, 1964 (ed. G.T., Goodman et al.), pp. 99117. Oxford: Blackwell Scientific Publications.Google Scholar
Crisp, D.J. & Ekaratne, K., 1984. Polymorphism in Pomatoceros. Zoological Journal of the Linnean Society, 80, 157175.CrossRefGoogle Scholar
Dasgupta, S. & Austin, A.P., 1960. The chromosome numbers and nuclear cytology of some common British serpulids. Quarterly Journal of Microscopical Science, 101, 395400.Google Scholar
Dixon, D.R., 1980. The energetics of tube production by Mercierella enigmatica (Polychaeta: Serpulidae). Journal of the Marine Biological Association of the United Kingdom, 60, 655659.CrossRefGoogle Scholar
Dixon, D.R., 1981. Reproductive biology of the serpulid Ficopomatus (Mercierella) enigmaticus in the Thames estuary, S.E., England. Journal of the Marine Biological Association of the United Kingdom, 61, 805815.CrossRefGoogle Scholar
Dixon, D.R., 1982. Aneuploidy in mussel embryos (Mytilus edulis L.) originating from a polluted dock. Marine Biology Letters, 3, 155161.Google Scholar
Dixon, D.R., 1985. Pomatoceros triqueter: a test system for environmental mutagenesis. In The effects of stress and pollution on marine animals (ed. B.L., Bayne et al), pp. 205214. New York: Praeger.Google Scholar
Dixon, D.R. & Flavell, N., 1986. A comparative study of the chromosomes of Mytilus edulis and Mytilus galloprovincialis. Journal of the Marine Biological Association of the United Kingdom, 66, 219228.CrossRefGoogle Scholar
Dixon, D.R. & Pascoe, P.L., 1994. Mussel eggs as indicators of mutagen exposure in coastal and estuarine marine environments. In Water quality and stress indicators in marine and freshwater systems: linking levels of organisation (ed. D.W., Sutcliffe), pp. 124137. UK: Freshwater Biological Association.Google Scholar
Duffus, J.H., Austen, M., Clyne-Kelly, M. & Smaldon, P.R., 1984. Studies on the suitability of developmental stages of Patella vulgata, Littorina rudis and Pomatoceros triqueter for toxicity assessment. In Ecological testing for the marine environment, vol. 2 (ed. G., Persoone et al.), pp. 3140. Belgium: State University of Ghent and Institute of Marine Scientific Research, Bredene.Google Scholar
Eigsti, O.J. & Dustin, P., 1955. Colchicine in agriculture, medicine, biology and chemistry. Ames, Iowa: Iowa State College Press.CrossRefGoogle Scholar
Ekaratne, K., Burfitt, A.H., Flowerdew, M.W. & Crisp, D.J., 1982. Separation of two Atlantic species of Pomatoceros, P. lamarckii and P. triqueter (Annelida: Serpulidae) by means of biochemical genetics. Marine Biology, 71, 257264.CrossRefGoogle Scholar
Faulkner, G.H., 1930. The anatomy and the histology of bud formation in the serpulid Filograna implexa, together with some cytological observations on the nuclei of the neoblasts. Journal of the Linnean Society (Zoology), 37, 109190.Google Scholar
Foyn, B. & Gjoen, I., 1950. Sex and inheritance in the serpulid Pomatoceros triqueter L. Nature, London, 165, 652653.CrossRefGoogle ScholarPubMed
Foyn, B. & Gjoen, I, 1954. Studies of the serpulid Pomatoceros triqueter L. I. Observations on the life history. Nytt Magasin for Zoologi, 2, 7381.Google Scholar
Gold, J.R. & Ellison, J.R., 1982. Silver staining for nucleolar organizing regions of vertebrate chromosomes. Stain Technology, 58, 5155.CrossRefGoogle Scholar
Groepler, W., 1984. The development of Pomatoceros triqueter from fertilization to the swimming blastula (Polychaeta, Serpulidae). Zoologische Beitraege, Berlin, 29, 157172.Google Scholar
Hedley, R.H., 1956. Studies of serpulid tube formation. I. The secretion of the calcareous and organic components of the tube of Pomatoceros triqueter. Quarterly Journal of Microscopical Science, 97, 411419.Google Scholar
Howell, W.M., 1977. Visualization of ribosomal gene activity: silver stains proteins associated with rRNA transcribed from oocyte chromosomes. Chromosoma, 62, 361367.CrossRefGoogle ScholarPubMed
Jha, A.N., Hutchinson, T.H., Mackay, J.M., Elliott, B.M., Pascoe, P.L. & Dixon, D.R., 1995a. The chromosomes of Platynereis dumerilii (Polychaeta: Nereidae). Journal of the Marine Biological Association of the United Kingdom, 75, 551562.CrossRefGoogle Scholar
Jha, A.N., Dominquez, I., Balajee, A.S., Hutchinson, T.H., Dixon, D.R. & Natarajan, A.T., 1995b. Localization of a vertebrate telomeric sequence in the chromosomes of two marine worms (phylum Annelida: class Polychaeta). Chromosome Research, 3, 507508.CrossRefGoogle ScholarPubMed
Jysum, S., 1957. Investigations of the neoblasts and oogenesis in the serpulid Pomatoceros triqueter L. Nytt Magasin for Zoologi, 5, 510.Google Scholar
King, M., 1993. Species evolution - the role of chromosome change. Cambridge: Cambridge University Press.Google Scholar
Klockner, K., 1978. On the ecology of Pomatoceros triqueter (Serpulidae, Polychaeta). 2. Influence of temperature on tolerance, regeneration of the tube, oxygen consumption and filtration activity. Helgolander Wissenschaftlichte Meeresuntersuchungen, 31, 257284.Google Scholar
Levan, A., Fredga, K. & Sandberg, A.A., 1964. Nomenclature for centromeric position on chromosomes. Hereditas, 52, 201220.CrossRefGoogle Scholar
Lewis, J.R., 1978. The ecology of rocky shores. London: Hodder & Stoughton.Google Scholar
Long, E.O. & Dawid, I.B., 1980. Repeated genes in eukaryotes. Annual Review in Biochemistry, 49, 727764.CrossRefGoogle ScholarPubMed
Lyster, I.H.J., 1965. The salinity tolerance of polychaete larvae. fournal of Animal Ecology, 34, 517527.CrossRefGoogle Scholar
Makino, S., 1951. An atlas of chromosome numbers in animals. Ames, Iowa: Iowa State College Press.CrossRefGoogle Scholar
Makino, S. & Nishimura, I., 1952. Water-pretreatment squash technique. A new and simple practical method for the chromosome study of animals. Stain Technology, 27, 17.CrossRefGoogle Scholar
Moore, M.N., Lowe, D.M., Livingstone, D.R. & Dixon, D.R., 1986. Molecular and cellular indices of pollutant effects and their use in environmental impact assessment. Water Science Technology, 18, 223232.CrossRefGoogle Scholar
Nordback, K., 1956. On the oogenesis and fertilisation of the serpulid Hydroides norvegica (Gunnerus). Nytt Magasin for Zoologi, 4, 121123.Google Scholar
OECD, 1967. Catalogue of marine fouling organisms. Vol. 3. Serpulids (ed. A., Nelson-Smith). Paris: Organization for Economic Cooperation & Development.Google Scholar
Oglesby, L.C., 1969. Inorganic components and metabolism; ionic and osmotic regulation: Annelida; Sipuncula; and Echiura. In Chemical zoology. Vol. 4. Annelida, Echiura and Sipuncula (ed. M., Florkin and B.T., Scheer), pp. 211310. New York: Academic Press.Google Scholar
Olsen, K.G., 1970. Observations on the chromosomes of three serpulids (Annelida: Polychaeta). Nytt Magasin for Zoologi, 4, 189198.Google Scholar
Pascoe, P.L. & Dixon, D.R., 1994. Structural chromosomal polymorphism in the dog-whelk Nucella lapillus (Mollusca; Neogastropoda). Marine Biology, 118, 247253.CrossRefGoogle Scholar
Pascoe, P.L., Patton, S.J., Critcher, R. & Dixon, D.R., 1996. Robertsonian polymorphism in the marine gastropod Nucella lapillus: advances in karyology using rDNA loci and NORs. Chromosoma, 104, 455460.Google ScholarPubMed
Samstad, S., 1971. Chromosome numbers in Serpula vermicularis L. and Filograna implexa Berkeley. Norwegian Journal of Zoology, 19, 169175.Google Scholar
Seed, R., 1992. Systematic evolution and distribution of mussels belonging to the genus Mytilus: an overview. American Malacological Bulletin, 9, 123137.Google Scholar
Segrove, F., 1941. The development of the serpulid Pomatoceros triqueter. Quarterly Journal of Microscopical Science, 82, 467540.Google Scholar
Soulier, A., 1906. La fecondation chez la serpule. Archives de Zoologie Expérimentale et Générate, Paris, 4e série, V, 403489.Google Scholar
Thiriot-Quievreux, C., 1994. Advances in cytogenetics of aquatic organisms. In Genetics and evolution of aquatic organisms (ed. A.R., Beaumont), pp. 369388. London: Chapman & Hall.Google Scholar
Thomas, J.G., 1940. Pomatoceros, Sabella and Antphitrite (ed. R.J., Daniels). Liverpool: The University Press. [LMBC. Memoirs of typical British marine plants and animals, no. 33.]Google Scholar
Vitturi, R., Maiorca, A. & Carollo, T., 1984. The chromosomes of Hydroides elegans (Haswell, 1883) (Annelida, Polychaeta). Caryologia, 37, 105113.CrossRefGoogle Scholar
White, M.J.D., 1978. Modes of speciation. San Francisco: W.H. Freeman & Co.Google Scholar
Williams, N.A., Dixon, D.R., Southward, E.C. & Holland, P.W.H., 1993. Molecular evolution and diversification in the vestimentiferan tube worms. Journal of the Marine Biological Association of the United Kingdom, 73, 437452.CrossRefGoogle Scholar
Zibrowius, H., 1968. Étude morphologique systématique et écologigue des serpulidae (Annelida, Polychaeta) de la région de Marseille. Receuil des Travaux de la Station Marine d'Endoume, 43, 81252.Google Scholar
Zibrowius, H. & Bellan, G., 1969. Sur un nouveau cas de salissures biologique favorisees par le chlore. Tethys, 1, 375–81.Google Scholar